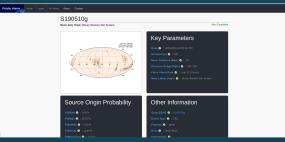


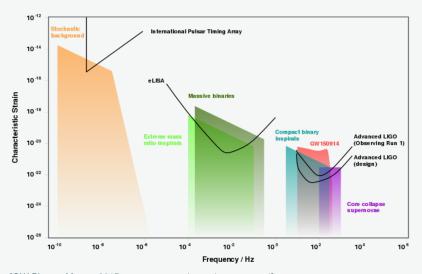
Gravitational wave signals in the pulsar band


Hannah Middleton

OzGrav - University of Melbourne hannah.middleton@unimelb.edu.au

Pulsar Workshop May 2019, Swinburne

Public Alerts!



chirp.sr.bham.ac.uk

gracedb.ligo.org

Gravitational wave spectrum

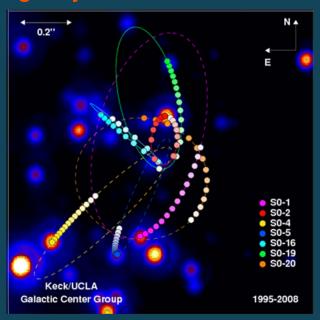
 $[GW\ Plotter:\ Moore+2015,\ \ \texttt{rhcole.com/apps/GWplotter/]}$

Super massive black holes

Super massive black hole binaries?

Masses:

 $\sim 10^6 M_{\odot} - 10^9 M_{\odot}$



[Interstellar]

Questions:

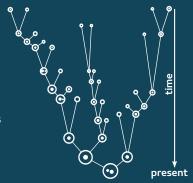
- Are there massive black hole binaries out there?
- How do they form?
- Gravitational waves from them
- What can we learn from these gravitational wave observations?

Our own galaxy

Other galaxies too?

[Event Horizon Telescope]

Other galaxies too?


- $\circ~$ Massive black holes 10 $^6-10^9~M_{\odot}$ in most galaxies [Kormendy & Ho 2013]
- What about massive black hole binaires?

Merger tree

Galaxy growth by mergers (White & Rees 1978)

Likely that black hole growth goes hand-in-hand with host galaxy

[Volonteri] [NASA]

Few million years

Dynamical Friction

Final parsec?

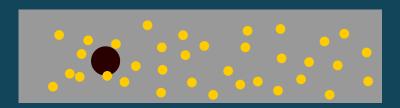
Gravitational wave emission

Black holes move through a sea of stars
Stars accellerated in their wake
Black holes lose momentum

→ sink towards centre of galaxy

(Chandrasekhar 1943, Begelman+ 1980)

Dynamical Friction


Final parsec?

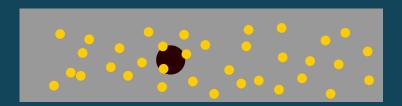
Gravitational wave emission

Black holes move through a sea of stars
Stars accellerated in their wake
Black holes lose momentum

→ sink towards centre of galaxy
Few million years

(Chandrasekhar 1943, Begelman+ 1980)

Dynamical Friction

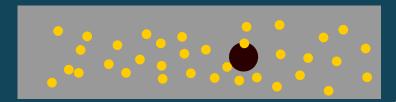

Final parsec?

Gravitational wave emission

Black holes move through a sea of stars
Stars accellerated in their wake
Black holes lose momentum

→ sink towards centre of galaxy
Few million years

(Chandrasekhar 1943, Begelman+ 1980)


Dynamical Friction

Final parsec?

Gravitational wave emission

Black holes move through a sea of stars
Stars accellerated in their wake
Black holes lose momentum

→ sink towards centre of galaxy
Few million years
(Chandrasekhar 1943, Begelman+ 1980)

Dynamical Friction

Final parsec?

Gravitational wave emission

Black holes move through a sea of stars
Stars accellerated in their wake
Black holes lose momentum

→ sink towards centre of galaxy
Few million years
(Chandrasekhar 1943, Begelman+ 1980)

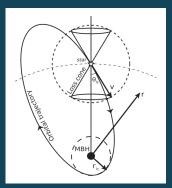
Galaxy merger gets the black holes within a few parsec

Need to get closer for GW emission:

$$a_{\text{gw}} = \left[\frac{64}{5} \frac{G^3 M_1 M_2 (M_1 + M_2) F(e)}{c^3}\right]^{1/4}$$

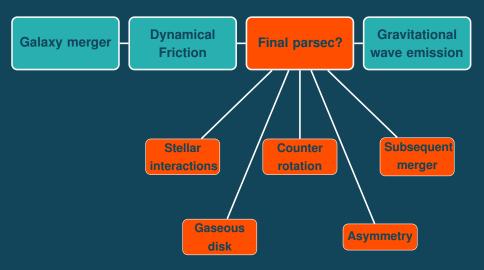
For
$$M_1 = M_2 = 2 \times 10^7 M_{\odot}$$
 $a_{\rm gw} \sim 0.01 {\rm pc}$

Dynamical Friction


Final parsec?

Gravitational wave emission

Closing the gap


Three body interaction with stars continues to shrink binary.

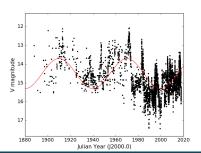
Eventually stars are depleted

[Merritt 2013]

Quinlan 1996, Mikkola & Valtonen 1992

Gravitational wave emission!!

Time to merger from 0.01pc:


$$t_{\text{merge}}(a) = 5.8 \times 10^6 \left(\frac{a}{0.01 pc}\right)^4 \left(\frac{10^8 M_{\odot}}{M_1}\right)^3 \frac{M_1^2}{M_2(M_1 + M_2)} \text{ years}$$

Observational evidence for MBHBs

OJ287

- massive black hole binary candidate
- \circ quasi-periodic outbursts observered \sim 12yr
- timing consistent with GW emission
- next burst expected July 2019
- [Valtonen+2008, Dey+2018]

[Dey+2018]

Observational evidence for MBHBs

- \circ PG 1302102 periodicity \sim 1884 \pm 88days [Graham+2015]
- $\,$ PSO J334.2028+01.4075 periodicity 542 \pm 15days [Liu+2015]
- o radio galaxy 0402+379 at $a \sim$ 7.3pc [Rodriguez+2006]
- 111 candidates in the Catelina Real Time Transient Survey
 [Graham+2015]

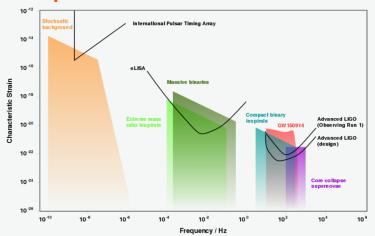
Massive black hole binaires are out there!

What kind of gravitational waves do we expect to see?

Gravitational waves from Massive black hole binairies

GW freqs

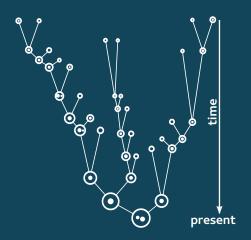
Transition to GW driven at \sim nHz


Frequency of merger:

$$f_{\rm gw,isco} = \frac{1}{\pi 6\sqrt{6}} \frac{c^3}{GM_{\rm T}}$$

Some typical numbers

total mass	merger frequency
$M_{ m T}$	$f_{ m gw,isco}$
60 <i>M</i> ⊙	\sim 100Hz
$200 M_{\odot}$	\sim 10Hz
$10^9 M_{\odot}$	\sim 10 $^{-6}$ Hz


GW freqs

Massive black hole binaries merge way before LIGO/Virgo band.

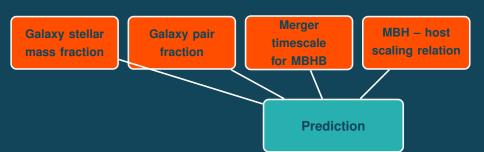
Stochastic background

- Expect many binaries population
- Stochastic background

[Volonteri]

Stochastic background

For circular binairies:

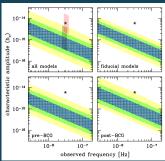

$$h_{\rm c}^2(f_{\rm gw}) = \frac{4G^{5/3}}{3\pi^{1/3}c^2} f_{\rm gw}^{-4/3} \int_0^\infty \int_0^\infty N(z, \log_{10} \mathcal{M}) \frac{\mathcal{M}^{5/3}}{(1+z)^{1/3}} dz d\log_{10} \mathcal{M}$$

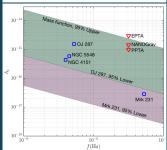
$$\mathcal{M} = \frac{(M_1 M_2)^{3/5}}{(M_1 + M_2)^{1/5}}$$

$$h_c \sim f_{gw}^{-2/3}$$

3W strain / h_c 10^{-9} 10^{-8} GW frequency / f_{aw}

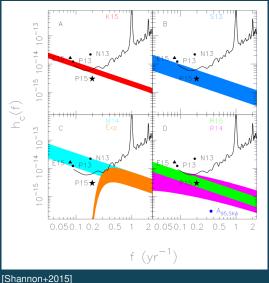
How can we predict $h_c(f_{gw})$?




Predicting

Range of predictions e.g.

Sesana 2013


Zhu+ 2018

What can we learn by looking for nHz gravitational waves?

Some PTA results

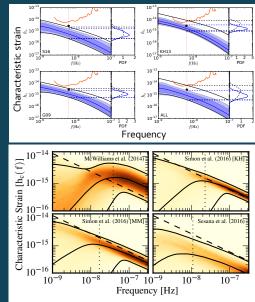
Results:

PPTA: Shannon+2015,

EPTA: Lentati+2015,

NANOGrav: Arzoumanian+2018,

Inference with upper limits


A detection will tells us:

- Do massive black holes form binaires?
- galaxy merger rate
- redshift and mass distributions
- are the binaries eccentric?

Inference with upper limits

Non-detections are informative too.

e.g. Arzoumanian+2018, Shannon+2015, Chen+2017a,b Middleton+2018

What if still no detection?

What could be going on?

- Is something speeding up the binary evolution?
 - Eccentricity
 - More star / gas interaction than expected
- Or slowing them down?
 - Stalling before they reach gravitational wave emission

Conclusions

- PTAs probe low frequency gravitational wave spectrum
- Learn about the population of massive black hole binaries
- Relate this to galaxy evolution