SWIN

% BUR
., 4 ~NE*
4—IJ Hﬂz Iﬂ’ “" SRS y %

|Hi H {4+ = S T Y 4 s AN
Wit x

SWINBURNE
UNIVERSITY OF
TECHNOLOGY

AT DALV AT L AL

bt 'L.»l T

e

Advanced™* Topics 1n Keras

Dr. Matthew Smith, ADACS Senior Software Engineer

matthewrsmith(@swin.edu.au

* Comparatively advanced ©

KNOW

CRICOS 00111D | NG
TOID 3059

Advanced Topics - Overview

¢ The final session of today’s workshop will cover:
— Inferencing in Keras (requiring importing and exporting models).
— Custom Activation functions in Keras

— Submitting training jobs to Ozstar

— If time permits, Image Classification.

KNOW

IN(€

PREREQUISITES

* You can use the material contained within the git repository ADACS ML B
as a starting point.

* Please go ahead and log into Ozstar, and move into the folder where you
previously cloned ADACS ML B.

When we’re all done, we’ll move on.

INFERENCING

* Inferencing is the process of:
* Taking the learned “knowledge” of a previously trained machine, and

* Application of this knowledge to new, previously unseen, data.

* As such, the process of inferencing might be considered as the goal of
machine learning.

* Since there is no training (or heavy computation) the process of

inferencing is usually quite fast.

INFERENCING

* Up to now, the codes provided to you:

* Create a Keras model,

* Train it — perform computations on the training data set for

computing the model weights (using model.fit())

* Test it — use the test data set to check the computed weights against

known data sets (using model.evaluate()).

INFERENCING

* To move forward, we need to:

* Modify our existing codes to export our model in a form which can
be loaded later on, and

* Create a new code — which we shall call infer.py — which will perform

inferencing given a single data set as an input.

EXPORTING YOUR KERAS MODEL

° Open your tr’a|n.Py ﬁle = the f”"St # Fit the model using the training set

history = model.fit(X_train, Y_train, epochs=N_epochs, batch_size=32)

few lines of code here should look,

plot_history(history) EX|Stmg

familiar. | | |
Final evaluation of the model using the Test Data
print("Evaluating Test Set")
scores = model.evaluate(X_test, Y_test, verbose=1)
print("Accuracy: %.2f % (scores[1]*180))

* The addition are the lines of code | tei: e toce) o L
A with Epon(model. ::'—,) as json_file:
Shown 18] the Iower half json_file.write(model_json) New

~

Save the weights as well, in HDF5 format
model.save_weights("model . h5")

EXPORTING YOUR KERAS MODEL

* One method for exporting the model information to
file is to employ the J[SON format (pronounced JAY-

SON)
{"menu": {
* JSON: Javascript Object Notation valuets "pile",
"popup”: {
. % 2 : . "menuitem": [
* This is simply a light-weight, text based format used for (tvalue”: "New?, "onclick": "CresteNewboo()'},
{"value": "Open", "onclick": "OpenDoc()"},

{"value": "Close", "onclick": "CloseDoc()"}

data exchange.)
}

}}

* The idea is that a JSON file is easily viewed by humans
and interpretted by computer systems — it looks very
similar to a C/C++ code.

EXPORTING YOUR KERAS MODEL

° The Ob]eCt hold"’]g the lson zt':i’. the model u?ing ’J'u:-'treining'5-:-’_ .

history = model.fit(X_train, Y_train, epochs=N_epochs, batch_size=32)

data is produced using the Y Plos the hictory
plot_history(history)

code:
Final evaluation of the model using the Test Data
print("Evaluating Test Set")

: : scores = model.evaluate(X_test, Y_test, verbose=1)
model_json = model.to_json() print("Accuracy: %.2f%%" % (scores[1]%1060))

!‘4 :,Rpl_l__ ,_Ll_ Il_ldl_‘ 9] '.11

* This is then written to file for [FEER opentTmogel ST, T as json_file:]

ison file.write(model json)

Save the weights as well, in HDF5 format

us to Ioad Iater’ model.save_weights("mode]

EXPORTING YOUR KERAS MODEL

* This is a sample of the JSON file produced by Keras using the to_json() function:
(at the terminal type: cat model.json <enter>)

{"class_name": "Sequential", "keras_version": "2.1.4", "config": [{"class_name": "Dense", "config": {
"kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "scale"
: 1.0, "seed": null, "mode": "fan_avg"}}, "name": "dense_1", "kernel_constraint": null, "bias_regular
izer": null, "bias_constraint": null, "dtype": "float32", "activation": "relu", "trainable": true, "k
ernel_regularizer": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "units": 16, "ba
tch_input_shape": [null, 128], "use_bias": true, "activity_regularizer": null}}, {"class_name": "Dens
e", "config": {"kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "un
iform", "scale": 1.8, "seed": null, "mode": "fan_avg"}}, "name": "dense_2", "kernel_constraint": null
, "bias_regularizer": null, "bias_constraint": null, "activation": "softmax", "trainable": true, "ker
nel_regularizer": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "units": 8, "use_b
ias": true, "activity_regularizer": null}}, {"class_name": "Dense", "config": {"kernel_initializer":

{"class_name": "VarianceScaling", "config": {"distribution": "uniform", "scale": 1.8, "seed": null, "

Go ahead and open the json file for a quick browse with the editor

of your choice. I'll give you guys a few minutes.

EXPORTING YOUR KERAS MODEL

* In addition to this, we need to export
the weights computed by the model.

Fit the model using the training set
history = model.fit(X_train, Y_train, epochs=N_epochs, batch_size=32)

Plot the hi‘}’.(jfy
plot_history(history)

model.save_weights(lNPUT) # Final evaluation of the model using the Test Data

print(yating Test Set")
scores = model.evaluate(X_test, Y_test, verbose=1)
print("Accuracy: %.21 % (scores[1]*180))

Where INPUT here is the name of the
. : " . del 3 = del.to_j ()
HDFS5 file we wish to save to. This file wien oot ores oo "7000 e seon fite:
ison file.write(model json)

will also be used later in infer.py. [u- Save the weights as well, in HDF5 format]

model.save_weights('

EXPORTING YOUR KERAS MODEL

» HDFS5 File format = 5% generation Hierarchical Data Format (HDF), which is

designed to store large amounts of data.

* Originally developed at the US’s NCSA (National Center for
Supercomputing Applications), home of the Blue Waters supercomputer

(originally IBM, later Cray)

* We can load these files in Python (by importing the h5py module), but we

won’t need to do that directly.

INFER.PY — IMPORTING MODELS

IMPORTING YOUR KERAS MODEL

* Importing a previously generated Keras model is almost a simple reversal of the

export steps — we need to:
* Open the model.json file for reading and load the data,

* Create a model from the information contained within the loaded data, and

* Compile the model, in the same way we compiled the model during training.

IMPORTING YOUR KERAS MODEL

* Included in your cloned repository is

the file you'll need — infer.py.

* This code:
* Loads a single file (specified by the

user) for classification.

* Loads the Keras database / model, and

* Performs a fit on that single data set.

Please open infer.py for editing.

rsity of Technology
s for a single inference
of the training file

GNU nano 2.3.1 File: infer.py
B infer.py
Written by Dr. Matthew Smith, Swinburne Unive
Load a precomputed keras model and its weight
USAGE: python infer.py ID where ID is the ID
we wish to load.

Import modules

import numpy as np

from keras.models import Sequential

from keras.models import model_from_json
from utilities import =*

import sys

Parse the input
no_arg = leni(sys.argv)
if (no_arg == 2):
ID = int(sys.argv[1])
else:
print(
print(
print(
print(

ID = 2

print(+ str(ID))

We still need to know how long the time series
N_sequence = 128 # Length of each piece of

IMPORTING YOUR KERAS MODEL

* Here are the key elements of this process — the core of infer.py is here:

Load the JSON file

json_file = openl

loaded_model_json = json_file.read()
json_file.closel)

Set up the neural layer configuration in the model

model = model_from_json(loaded_model_json)

Load the weights into the model

model.load_weights('r)

Compile it

model.compile(optimizer= , loss= y_Cl ropy', metrics=|

* In this case, the model.json and model.h5 files are in the same directory as this

python script — these were produced when you executed train.py previously.

IMPORTING YOUR KERAS MODEL

* Before using the loaded weights and model, we are required to compile the model.

Load the JSON file

json_file = open('model.json','r"')
loaded_model_json = json_file.read()
json_file.closel()

Set up the neural layer configuration in the model
model = model_from_json(loaded_model_json)

Load the ﬁCighTS into the model
model.load_weights("model. . h5")

Compile it
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])

THE FINAL PRODUCT: INFER.PY

* Let’s have a look at the entire code.

* The first new addition is the
model_from_json module which needs

to be imported.

* We can see this code parses the input
provided from the command prompt —

if the user does not provide an ID, we

use ID = 2 as a default value.

infer.py

Written by Dr. Matthew Smith, Swinburne University of Technol
Load a precomputed keras model and its weights for a single 1
USAGE: python infer.py ID where ID is the ID of the training
we wish to load.

Import modules

import numpy as np

from keras.models import Sequential

from keras.models import model_from_json
from utilities import *

import sys

Parse the input
no_arg = len(sys.aragv)
if (no_arg == 2):
ID = int(sys.argv(1])
else:
print(
print(
print(
print(
ID = 2

| kKNnOw

THE FINAL PRODUCT: INFER.PY

* In this case, we are going to be lazy and load one of the test data sets for inferencing.

* Normally you would have the data you wished inferenced provided in another way —

but since we are short on time, let’s use the tools we have available.

* We use the read test data() function (from utilities.py) to load a single set of data in

— if you wish to modify this later to load multiple sets, the tools are there for you.

We still need to know how long the time series 1is

N_sequence = 128 # Length of each piece of data

Create variables for use while inferencing.

Keeping it in array form; you might want to inference

multiple data sets later.

X_infer = np.empty([1,N_sequence])

Y_infer = np.empty(1)

We can take this data from anywhere - let's load one of the training sets
X_infer(®,)], Y_infer[®] = read_test_datal(ID, N_sequence)

T R B Y T

THE FINAL PRODUCT: INFER.PY

Load the JSON file

b After thls, We are free json_file = open('model.json','r!')
loaded_model_json = json_file.read()
to load our model (we isen_file.ciose()
. # Set up the neural layer configuration in the model
COUId have dOne thlS model = model_from_json(loaded_model_json)
Load the weights into the model
f|r'st’ but no matter). model.load_weights("model . h5")
Compile it
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])

* We use two functions

Now try classifying the single data file we loaded
Class_infer = model.predict_classes(X_infer)

to perform our

Compute the class predictions - shouldn't be used as certainties.
Class_prob = model.predict(X_infer)

inference:

print("The predicted class is %d" % Class_infer[0])
print("Class Predictions: Class 8 = %f, Class 1 = %f" % ((1.0-Class_prob[8]), Class_prob[@8]))
print("The actual loaded class is %d" % Y_infer[(0])

THE FINAL PRODUCT: INFER.PY

* The purpose of our ML engine was to predict classes — i.e. perform a classification task.

* Hence we use the predict_classes() function — in this case, the function will return either a

[0] or [I] — if we load more data sets, it will be an array of 0’s or |’s.

Now try classifying the single data file we loaded
Class_infer = model.predict_classes(X_infer)

* There are additional inputs for the predict_classes function: feel free to browse the Keras

documentation for these.

THE FINAL PRODUCT: INFER.PY

* The previous function returned the predicted classes, which is very convenient

for us.

* If we wish the raw output of the NN to be provided, we use the predict()

function:

Compute the class predictions - shouldn't be used as certainties.
Class_prob = model.predict(X_infer)

* This function replaces the predict_proba() function from earlier versions of

Keras, though predict_proba should still work if used here (and provide the

same result)

THE FINAL PRODUCT: INFER.PY

predict

predict(x, batch_size=None, verbose=0, steps=None)
Generates output predictions for the input samples.
Computation is done in batches.

Arguments

» X: The input data, as a Numpy array (or list of Numpy arrays if the model has multiple inputs).

» batch_size: Integer. If unspecified, it will default to 32.

« verbose: Verbosity mode, O or 1.

» steps: Total number of steps (batches of samples) before declaring the prediction round finished.
Ignored with the default value of None .

THE FINAL PRODUCT: INFER.PY

* Since we have a binary
classification problem
with a single output in
our NN, we will have a
single value returned.

* It’s not really a

probability — but just
between you and me,
let’s pretend it is.

Load the JSON file

json_file = open('model.json','r"')
loaded_model_json = json_file.read()
json_file.closel)

Set up the neural layer configuration in the model
model = model_from_json(loaded_model_json)

Load the weights into the model
model.load_weights("model . h5")

Compile it

model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy

Now try classifying the single data file we loaded
Class_infer = model.predict_classes(X_infer)

/;>COTDUTC the class predictions - shouldn't be used as certainties.
Class_prob = model.predict(X_infer)

print("The predicted class is %d" % Class_infer[0])

\EFint(The actual loaded class is %d" % Y_infer([0])

~

print("Class Predictions: Class @ = % = %7" % ((1.8-Class_prob[®8]), Class_probl(8]))

THE FINAL PRODUCT: INFER.PY

* Since we are using the functions contained within utilities.py, and loading the test

data for inferencing, we should place infer.py in the same directories as train.py.
* When we call this script (python infer.py 24), this is what we get:

Loading file = 24

Loading file ./Test/X_24.dat

The predicted class is @

Class Predictions: Class @ = 8.931161, Class 1 = 0.068839
The actual loaded class is ©

* You can see that we are quite sure that the class is not class | (accurate), and we

have correctly picked the class.

ACTIVITY

* Run train.py once and ensure that the json and model files are there.

* Run infer.py python infer.py 5 <enter> (for example)

* Check to make sure the predicted and actual classification matches.

Let us know when you are done — then we may move on.

CUSTOM ACTIVATION FUNCTIONS

CUSTOM ACTIVATION FUNCTIONS

* In your previous experimentation, you will have noticed that the choice of
activation functions within each layer does influence the performance of the

model.
* Research into new activation functions is very active, and on-going.

* While Keras will continue to be supported with newer functions being added, it

is likely you will encounter situations where you might want to add your own

function.

CUSTOM ACTIVATION FUNCTIONS

* Today we are going to implement a recently proposed activation function

developed by Google — the swish activation function.

SEARCHING FOR ACTIVATION FUNCTIONS

Prajit Ramachandran; Barret Zoph, Quoc V. Le
Google Brain
{prajit,parretzoph,qvl}@google.com

ABSTRACT

The choice of activation functions in deep networks has a significant effe
the training dynamics and task performance. Currently, the most successfu
widely-used activation function is the Rectified Linear Unit (ReLU). Alth
various hand-designed alternatives to ReLU have been proposed, none have
aged to reolace it due to inconsistent gains. In this work. we prooose o |

Is it Time to Swish?
Comparing Deep Learning Activation Functions Across NLP tasks

Steffen Eger, Paul Youssef, Iryna Gurevych
Ubiquitous Knowledge Processing Lab (UKP-TUDA)
Department of Computer Science
Technische Universitdt Darmstadt
www.ukp.tu-darmstadt.de

Abstract ReLU function (Glorot et al., 2011) has proven
o . . . much more suitable. It has an identity deriva-
Activation functions play a crucial role in tive in the positive region and is thus claimed to

nenral networke hecanes thev are the non- P

SWISH ACTIVATION FUNCTION

* I'll be using the swish function of the form:

swish(x) = Bx sigmoid(x)
where Beta is a constant, x is our input vector and sigmoid is:

exp(x)

sigmoid(x) =

exp(x) +1

SWISH ACTIVATION FUNCTION

’ ¥ ofe o 8 ._,Tili’.i':‘i.py
* Let’s write some code — open utilities.py # Dr. Matthew Smith, Swinburne University of Technology
I Various tools prepared for the ADACS Machine Learning ﬁDf(ShDDI

and make some changes: 1 .
i 4 mp OrT moqQulies
import matplotlib

* WEe’'ll need the keras backend if we matplotlib.use(' tkagg')
import matplotlib.pyplot as plt

want to borrow the sigmoid function import numpy as np '

import keras

— so import keras. def swish(x):
Swish tivation function
. . beta = 1.5
% Deﬁne a hew funCtlon (SWISh(X)) for return beta*x+*keras.backend.sigmoid(x) -

us to use in our model.

Feel free to use numpy’s exp() function if you want to ..
write out the sigmoid function explicitly and avoid Please make the Changes to the Utllltle&PY code.

importing Keras or using its backend.

SWISH ACTIVATION FUNCTION

* To use it, we need to edit the train.py file

i go ahead and OPen It for editing- # Create our Keras model - an RNN (in Keras this is a Sequence)

model = Sequentiall)

> Rep|ace the aCtivation funCtion on the # Let's add some dropout on the input layer.

We'll duplicate the input dimension to make it easlier to comment out
inPUt or hldden |a.)’er Wlth your SW|Sh() model.add(Dropout(8.5, input_shape=(N_sequence,)))
model.add(Dense(16, activation='relu',input_dim=N_sequence))
. model.add(Dense(8, activation = swish))
funCtlon. #model.add(Dense(8, activation='relu'))

model.add(Dense(1, activation='=igmoid'))

Please make the changes to the train.py code, and run it to make sure it works.

NOTE ON INFERENCING...

* When you run this train.py file, you will produce the json and h5 files you

need to perform inferencing.

* However, if you attempt now to run infer.py ..Well, | think the best thing

to do is try it out.

Run your infer.py script and see what happens.

NOTE ON INFERENCING...

* |t shouldn’t have worked.

* The swish function is not
part of the standard keras
library. Even though the

swish function is def’d in

utilities.py, an error appears.

Traceback (most recent call last):
File "infer.py", line 46, in <module>
model = model_from_json(loaded_model_json)

File
File
File
File
File
File
File
File
File
File
File
File

"build/bdist.
"build/bdist.
"build/bdist.
"build/bdist.
"build/bdist.
"build/bdist.
"build/bdist.
"build/bdist.
"build/bdist.
"build/bdist.
"build/bdist.
"build/bdist.

ValueError: Unknown

linux-x86_64/egg/keras/models.py", line 34
linux-x86_64/egg/keras/layers/__init__.py"
linux-x86_64/egg/keras/utils/generic_utils
linux-x86_64/egg/keras/models.py", line 1%
linux-x86_64/egg/keras/layers/__init__.py"
linux-x86_64/egg/keras/utils/generic_utils
linux-x86_64/egg/keras/engine/topology.py"
linux-x86_64/egg/keras/legacy/interfaces.g
linux-x86_64/egg/keras/layers/core.py", 1li
linux-x86_64/egg/keras/activations.py", 1li
linux-x86_64/egg/keras/activations.py", 1li
linux-x86_64/egg/keras/utils/generic_utils
activation function:swish

NOTE ON INFERENCING...

* We need to inform keras that we are using a custom function.

* Please open infer.py for editing, and make the following change:

Set up the neural layer configuration in the model
model = model_from_json(loaded_model_json, custom_objects={'swish':swish})

#model = model_from_json(loaded_model_json)

Load the weights into the model

model.load_weights("model.h5")

Compile 1t

model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])

Run your infer.py script again — it should work now.

ACTIVITY

* The Penalised Tanh activation function has recently been demonstrated to

provide consistently strong performance in RNN’s.

* Modify your code to use the Penalised Tanh activation function:

| tanh(x), x>0
PE= {0.25 tanh(x), x<0

* Apply this, together with dropout and filtering, on your previously
modified data set for training.

* Test your infer.py with this new function as well.

IMAGE CLASSIFICATION WITH KERAS

IMAGE CLASSIFICATION

* Another popular application of RNN’s is for the use of Image Classification.
* There are several concepts we will need to investigate before we can
practically do this:
* Data Generators
* Data Augmentation

* Convolution, Pooling and Flattening

* After that, the rest of the code is virtually unchanged.

PROBLEM INTRODUCTION

* In this case, | have prepared a set of images for us to use for a binary

classification problem — a group of woofs and meows taken from the

These images are all of different
dimensions (i.e. numbers of pixels)
with varying amounts of noise.

Kraggle Cats and Dogs data set: https:llwww.miqgﬂosoft.comlen-usldownIoadldetaiIs.aspx?id=54765

PROBLEM INTRODUCTION

DIRECTORY

* You can git clone the scripts you'll need through this

repository.

git clone https://github.com/archembaud/ADACS ML_D
AND/OR you can pull it from /fred/0z989/IMAGE_DATA

- all of the files you'll need for this are there.

* Copy it into a directory in your home folder — you’ll also

need to set up these directories:

preview

Set up your files / folders now

PROBLEM INTRODUCTION

DIRECTORY

* Each one of the 4 training and test folders — cats and dogs
respectively — ought to hold the JPG files used for this

demonstration.

* You'll need to move the tar.gz files into the correct

locations, and unzip them.

* There are 1000 training images (cats and dogs, 2000 total)
and 100 test images (200 total) — 2200 images all together.

Let’s get this down now, please.

preview

100 jpg files

100 jpg files

1000 jpg files

1000 jpg files

DATA GENERATORS

* The amount of data involved with image classification can be quite large —
in this case, we only have 2400 images (2000 train, 200 test) but even so,

the amount of data is quite large compared to previous examples.

* Best practice in this case is to make use of data generators — this allows

us to load data in parallel (using multiple CPU cores) along with other

advantages (related to memory use).

DATA GENERATORS

* Using generators typically results in two major differences when

compared to the previously covered examples:

* We do not manually load the whole data set in.VVe need to set up the

generators to load data when the data is required, which happens in batches.

* We cannot use the fit() and evaluate() functions as we did before — since the

whole dataset is never on hand.We instead use fit_generator() and

evaluate generator() functions.

DATA GENERATORS

* Let’s get into it — please open train.py for editing

Image classification demonstration with Keras
Q Q O # Dr. Matthew Smith, Swinburne University of Technology, CAS / ADACS

using whatever editor you like. ¢ Betore using this’ sori you:
(i) Create the 3 an
You'll ain/ca ./test/dogs, ./preview
(ii) Extract e 2 fi
There will be 1000 training images each of cats dogs, with 180 training images &
The preview folder, initially empty, will be filled by the eview_Image_Generator()

from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
. o from keras.layers import Conv2D, MaxPooling2D
L We are IOOI(I ng for the traln dataget and from keras.layers import Activation, Dropout, Flatten, Dense
— from keras import backend as K
from utilities import *

test_datagen types, just a little down from the top.

is not par L process — you can

comment this out afte

S use
Preview_Image_Generator(True)

Dimensions of our images.

img_width, img_height = 158, 158

train_dir =

test_dir =

N_train = 2008 # Total number of training files we have (1888+1000)
N_test = 200 # Total number of test files we have (100+100)
N_epochs = 1 # This is not going to be enough.

Prepare augmented training data generator

train_datagen = Prepare_Image_Data(®.2, 6.2, True, False)

test_datagen = Prepare_Image_Data(9.8, 0.8, False, True) KNOW

Create the training and testing data generators.

train_generator = train_datagen.flow_from_directory(train_dir,
target_size=(img_width, img_height), batch_size=32,c

DATA GENERATORS

* First, we create our train_datagen and test_datagen structures using the
Prepare_Image Data() functions (inside utilities.py) — back to this soon.

Prepare augmented training data generator
train_datagen = Prepare_Image_Data(®8.2, 8.2, True, False)
test_datagen = Prepare_Image_Data(©8.8, 8.8, False, e)

C te the training and testing data generators
‘ train_generator = train_datagen.flow_from_directory(train_dir,
target_size=(img_width, img_height), batch_size=32,class_mode='bi

‘ test_generator = test_datagen.flow_from_directory(test_dir,
target_size=(img_width, img_height), batch_size=32,class_mode='b1

* What is more important is the 2"? group of commands, and the batch size.

DATA GENERATORS

* The batch size is important because, later on when performing training and

evaluating, data will be loaded into memory in groups of 32 (in this case).

Prepare augmented training data generator
train_datagen = Prepare_Image_Data(®8.2, 8.2, True, False)
test_datagen = Prepare_Image_Data(©8.8, 8.8, False, e)

Create the training and testing data generators.
train_generator = train_datagen.flow_from_directory(train_dir,
target_size=(img_width, img_height), batch_size=32,class_mode='bi

test_generator = test_datagen.flow_from_directory(test_dir,
target_size=(img_width, img_height), batch_size=32,class_mode='b1

* This means that we will have (2000//32 = 62 batches) to run through.

CONVOLUTION

* The process of convolution in neural networks is not related to mathematical

convolution. It’s very misleading.
* If time permits, I'll talk to you a little about the convolution process.

* Practically, it has a lot in common with the moving filter we applied on the |ID

data previously.

CONVOLUTION

Create the model

* You can find more info about model = Sequential()
I . I I r‘ . # Add convolution and pooling layers to find features and reduce problem size.
convolutiona a)’el’S ere. model.add(Conv2D(32, (3, 3), input_shape=input_shape,activation='relu'))

\

model.add(MaxPooling2D(pool_size=(2, 2)))

https://keras.io/layers/convolutional/ |model.add(conv2p(32, (3, 3), activation='relu’))

\

model.add(MaxPooling2D(pool_size=(2, 2)))

* Convolution provides volumes | model.add(Conv2D(64, (3, 3), activation='relu’))

!

model.add(MaxPooling2D(pool_size=(2, 2)))
of data, depending on our

Reduce our problem to a one dimensional form
i} # After this, it is like we have a 1D sequence
parameters, which needs to be |« as we did in previous examples.

model.add(Flatten())

flattened before we feed it into

From here it is business as usual.
This is a binary classification problem, so make sure the output layer

a normal NN. # has one output. Don't place dropout on the output layer.
model.add(Dense(64,activation="relu'))

model.add(Dropout(8.6))

model.add(Dense(1l, activation='sigmoic

OZSTAR SUBMISSIONS

* Against my better judgement, try running the script from the head node:

python train.py <enter>

* It’s only | epoch, but it still takes quite a lot of time. It would be pretty

irresponsible to run this on the head (log-in) node of Ozstar.

* We need to submit a job to the Ozstar queue using sbatch.

OZSTAR SUBMISSIONS

#!/bin/bash
There are many good examples here: g

#SBATCH --job-name=Train_Py

o o #SBATCH ——output=log.txt
https://supercomputing.swin.edu.au #SBATCH —-ntasks=1
#SBATCH —-cpus-per-task=1
. ; . . #SBATCH —-—-ntasks-per—-node=1
Here is a script which would be suitable for today. #SBATCH —-time=1:00:00
#SBATCH ——mem-per-cpu=1666
#SBATCH —--partition=skylake
1 1 1 #SBATCH --gres=gpu:1l
There are only a couple of lines which might need JERATCH —gros=gousl
#SBATCH --reservation=ml

special attention.
Load the modules
module load numpy/1.14.1-python-2.7.14

This is not a tutorial on Ozstar job submission — but module 10ad tensorflongpu/1.6.8-python-2.7.14
module load scikit-learn/8.19.1-python-2.7.14

. . - module load keras/2.1.4-python-2.7.14
If)’OU ha’ve no Idea Where to Start’ COP)’ th|S. module load h5py/2.7.1-python-2.7.1l4-serial

Run the script
python train.py

jobscript.sh (found in the last repository you cloned)

OZSTAR SUBMISSIONS

. . #!/bin/bash
* Note:You automatically made yourself a copy of this . "
: . N . #SBATCH --job-name=Train_Py
when you git cloned the repository. Edit it with me. #SBATCH —-output=log. txt
#SBATCH --ntasks=1
#SBATCH —-cpus-per-task=1
4 #SBATCH —-—-ntasks-per—-node=1
* We have a couple of nodes especially allocated to us ~ £33AT¢H —~ntaske-per-n
#SBATCH ——mem-per-cpu=1666

today for the purpose of the workshop — we gain #SBATCH —-partition=skylake
#SBATCH —-—-gres=gpu:l
access to these through --reservation: ‘ﬁggf\}gg ==AcCONRtsOZSRS
--reservation=ml

. — # Load the modules
#SBATCH —reservation=m| module load numpy/1.14.1-python-2.7.14

module load tensorflowgpu/l1.6.8-python-2.7.14
. . . module load scikit-learn/8.19.1-python-2.7.14
* These nodes will be deactivated (SOON!) so, in the nodule load Keras/2.1.4-python-2.7.14
module load h5py/2.7.1-python-2.7.14-serial

future, don’t use this.

Run the script
python train.py KNOW

OZSTAR SU BM ISSIONS Note the log.txt file for output here.

#!/bin/bash

* In the future, you’ll also need to run jobs through y
B : #SBATCH --job-name=Train_Py
your own Ozstar project accounts. So the following #SBATCH —output=log. txt

#SBATCH —--ntasks=1
I-) #SBATCH —-cpus-per-task=1
Ine: #SBATCH —-—-ntasks-per—-node=1
#SBATCH --time=1:00:00

#SBATCH ——mem-per-cpu=1666
#SBATCH —acount=0z989 #SBATCH --partition=skylake
#SBATCH --gres=gpu:l -
‘ #SBATCH --account=0z989
#SBATCH --reservation=ml

Load the modules
module load numpy/1.14.1-python-2.7.14
y . o
° module load tensorflowgpu/l1l.6.0-python-2.7.14
Don’t forget to ask for a GPU since we are using i ol e e o i P A el

module load keras/2.1.4-python-2.7.14
the tensorﬂowgpu mOdUIG.. module load hSpy/2.7.1-python-2.7.14-serial

will also need to be replaced.

Run the script
python train.py KNOW

OZSTAR SUBMISSIONS

* Use sbatch to submit the job:

sbatch jobscript.sh <enter>

* You'll get a message saying the job has been submitted, and a batch job number.

Username@farnarklel ImageClassification]$ sbatch jobscript.sh
Submitted batch job 2415377

* The regular text / information which appears on the screen when you previously ran

the jobs on the headnode will be saved to log.txt

OZSTAR SUBMISSIONS

GNU nano 2.3.1 File: log.txt

* Edit the job.txt :

A process has executed an operation involving a call to the

"fork()" system call to create a child process. Open MPI is currently
operating in a condition that could result in memory corruption or
other system errors; your job may hang, crash, or produce silent

. L3 L3 .
* As the job goes on, more text will appear in R ool e ety Shsomesees, o1 S
The process that invoked fork was:

this file. If it is empty, it is likely because your Ctoaves,1,81 (D se2e20)

. . 5 i ’ If you are *absolutely sure* that your application will successfully
d tl i 11 to fork() disabl hi i
job is still running — or hasn’t started yet. e eeeine the aed vt onTork Han shrabaten Jo gL 1e this warning

/apps/skylake/software/mpi/gcc/6.4.8/openmpi/3.0.8/h5py/2.7.1-python-2.7.14/1ib/python2.7/s
from ._conv import register_converters as _register_converters

* The GPU will only allow one user access at any Thers it be 52 creining ozoups here

Found 2008 images belonging to 2 classes.
Found 208 images belonging to 2 classes.

time — there are a few GPU'’s on this node, but Layer (type) T Output Shape T Raram B

conv2d_1 (Conv2D) (None, 148, 148, 32) 896
still — if the reserved nodes are full, your jOb nex_pooling2d 1 (Maxpooling? (Nems, 74, 74, 820 R
convad s Gomvad) T iene, 72, 72, 3 s

will spiII over into the regular Ozstar cue. e R YT T R T T R S

WRAPPING UP

* You'll need to save the models and weights for job submissions on Ozstar

to be of any use. Otherwise, apart from the log.txt file, its all lost.

* | haven’t shown you how to export and load the model required for image

classification — it is very similar to the previously listed examples; I’'m sure

you'll figure things out on your own.

WRAPPING UP

* Tomorrow:

* You'll be working alone (in your groups) to solve the LIGO signal classification
problem. This will be shared with you tomorrow.

* You can also work on your own problems, or modify the image classifier I've

presented here for galaxy classification (for example).

* You will absolutely need access to /fred/0z989 to get the LIGO data, but more
info for this will be shown tomorrow morning.

See you tomorrow.

