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Advanced Topics - Overview

The final session of today’s workshop will cover:
– Inferencing in Keras (requiring importing and exporting models). 
– Custom Activation functions in Keras
– Submitting training jobs to Ozstar

– If time permits, Image Classification.



PREREQUISITES

• You can use the material contained within the git repository ADACS_ML_B 
as a starting point.

• Please go ahead and log into Ozstar, and move into the folder where you 
previously cloned ADACS_ML_B.

When we’re all done, we’ll move on.



INFERENCING

• Inferencing is the process of:
• Taking the learned “knowledge” of a previously trained machine, and

• Application of this knowledge to new, previously unseen, data.

• As such, the process of inferencing might be considered as the goal of 
machine learning.

• Since there is no training (or heavy computation) the process of 
inferencing is usually quite fast.



INFERENCING

• Up to now, the codes provided to you:
• Create a Keras model,

• Train it – perform computations on the training data set for 
computing the model weights (using model.fit())

• Test it – use the test data set to check the computed weights against 
known data sets (using model.evaluate()).



INFERENCING

• To move forward, we need to:
• Modify our existing codes to export our model in a form which can 

be loaded later on, and

• Create a new code – which we shall call infer.py – which will perform 
inferencing given a single data set as an input. 



EXPORTING YOUR KERAS MODEL

• Open your train.py file – the first 
few lines of code here should look 
familiar.

• The addition are the lines of code 
shown in the lower half.

Existing

New



EXPORTING YOUR KERAS MODEL

• One method for exporting the model information to 
file is to employ the JSON format (pronounced JAY-
SON)

• JSON: Javascript Object Notation

• This is simply a light-weight, text based format used for 
data exchange.

• The idea is that a JSON file is easily viewed by humans 
and interpretted by computer systems – it looks very 
similar to a C/C++ code.



EXPORTING YOUR KERAS MODEL

• The object holding the json
data is produced using the 
code:

• This is then written to file for 
us to load later.

model_json = model.to_json()



EXPORTING YOUR KERAS MODEL

• This is a sample of the JSON file produced by Keras using the to_json() function:  
(at the terminal type: cat model.json <enter>)

Go ahead and open the json file for a quick browse with the editor 
of your choice. I’ll give you guys a few minutes.



EXPORTING YOUR KERAS MODEL

• In addition to this, we need to export 
the weights computed by the model.

Where INPUT here is the name of the 
HDF5 file we wish to save to.  This file 
will also be used later in infer.py.

model.save_weights(INPUT)



EXPORTING YOUR KERAS MODEL

• HDF5 File format = 5th generation Hierarchical Data Format (HDF), which is 
designed to store large amounts of data.

• Originally developed at the US’s NCSA (National Center for 
Supercomputing Applications), home of the Blue Waters supercomputer 
(originally IBM, later Cray)

• We can load these files in Python (by importing the h5py module), but we 
won’t need to do that directly.



INFER.PY – IMPORTING MODELS



IMPORTING YOUR KERAS MODEL

• Importing a previously generated Keras model is almost a simple reversal of the 
export steps – we need to:

• Open the model.json file for reading and load the data,

• Create a model from the information contained within the loaded data, and

• Compile the model, in the same way we compiled the model during training.



IMPORTING YOUR KERAS MODEL

• Included in your cloned repository is 
the file you’ll need – infer.py.

• This code:

• Loads a single file (specified by the 
user) for classification.

• Loads the Keras database / model, and

• Performs a fit on that single data set.

Please open infer.py for editing.



IMPORTING YOUR KERAS MODEL

• Here are the key elements of this process – the core of infer.py is here:

• In this case, the model.json and model.h5 files are in the same directory as this 
python script – these were produced when you executed train.py previously.



IMPORTING YOUR KERAS MODEL

• Before using the loaded weights and model, we are required to compile the model.



THE FINAL PRODUCT: INFER.PY

• Let’s have a look at the entire code.

• The first new addition is the 
model_from_json module which needs 
to be imported.

• We can see this code parses the input 
provided from the command prompt –
if the user does not provide an ID, we 
use ID = 2 as a default value.



THE FINAL PRODUCT: INFER.PY

• In this case, we are going to be lazy and load one of the test data sets for inferencing.

• Normally you would have the data you wished inferenced provided in another way –
but since we are short on time, let’s use the tools we have available.

• We use the read_test_data() function (from utilities.py) to load a single set of data in 
– if you wish to modify this later to load multiple sets, the tools are there for you.



THE FINAL PRODUCT: INFER.PY

• After this, we are free 
to load our model (we 
could have done this 
first, but no matter).

• We use two functions 
to perform our 
inference:



THE FINAL PRODUCT: INFER.PY

• The purpose of our ML engine was to predict classes – i.e. perform a classification task.

• Hence we use the predict_classes() function – in this case, the function will return either a 
[0] or [1] – if we load more data sets, it will be an array of 0’s or 1’s. 

• There are additional inputs for the predict_classes function: feel free to browse the Keras
documentation for these.



THE FINAL PRODUCT: INFER.PY

• The previous function returned the predicted classes, which is very convenient 
for us.

• If we wish the raw output of the NN to be provided, we use the predict() 
function:

• This function replaces the predict_proba() function from earlier versions of 
Keras, though predict_proba should still work if used here (and provide the 
same result)



THE FINAL PRODUCT: INFER.PY



THE FINAL PRODUCT: INFER.PY

• Since we have a binary 
classification problem 
with a single output in 
our NN, we will have a 
single value returned.

• It’s not really a 
probability – but just 
between you and me, 
let’s pretend it is.



THE FINAL PRODUCT: INFER.PY

• Since we are using the functions contained within utilities.py, and loading the test 
data for inferencing, we should place infer.py in the same directories as train.py.

• When we call this script (python infer.py 24), this is what we get:

• You can see that we are quite sure that the class is not class 1 (accurate), and we 
have correctly picked the class.



ACTIVITY

• Run train.py once and ensure that the json and model files are there.

• Run infer.py

• Check to make sure the predicted and actual classification matches. 

python infer.py 5 <enter> (for example)

Let us know when you are done – then we may move on.



CUSTOM ACTIVATION FUNCTIONS



CUSTOM ACTIVATION FUNCTIONS

• In your previous experimentation, you will have noticed that the choice of 
activation functions within each layer does influence the performance of the 
model.

• Research into new activation functions is very active, and on-going.

• While Keras will continue to be supported with newer functions being added, it 
is likely you will encounter situations where you might want to add your own 
function.



CUSTOM ACTIVATION FUNCTIONS

• Today we are going to implement a recently proposed activation function 
developed by Google – the swish activation function.



SWISH ACTIVATION FUNCTION

• I’ll be using the swish function of the form:

where Beta is a constant, x is our input vector and sigmoid is:

𝑠𝑤𝑖𝑠ℎ 𝑥 = 𝛽𝑥	𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑥 =
exp 𝑥

exp 𝑥 + 1



SWISH ACTIVATION FUNCTION

• Let’s write some code – open utilities.py
and make some changes:

• We’ll need the keras backend if we 
want to borrow the sigmoid function 
– so import keras.

• Define a new function (swish(x)) for 
us to use in our model.

Please make the changes to the utilities.py code.
Feel free to use numpy’s exp() function if you want to 

write out the sigmoid function explicitly and avoid 
importing Keras or using its backend.



SWISH ACTIVATION FUNCTION

• To use it, we need to edit the train.py file 
– go ahead and open it for editing.

• Replace the activation function on the 
input or hidden layer with your swish() 
function.

Please make the changes to the train.py code, and run it to make sure it works.



NOTE ON INFERENCING…

• When you run this train.py file, you will produce the json and h5 files you 
need to perform inferencing.

• However, if you attempt now to run infer.py .. Well, I think the best thing 
to do is try it out.

Run your infer.py script and see what happens.



NOTE ON INFERENCING…

• It shouldn’t have worked.

• The swish function is not 
part of the standard keras
library.  Even though the 
swish function is def’d in 
utilities.py, an error appears.



NOTE ON INFERENCING…

• We need to inform keras that we are using a custom function.

• Please open infer.py for editing, and make the following change:

Run your infer.py script again – it should work now.



ACTIVITY

• The Penalised Tanh activation function has recently been demonstrated to 
provide consistently strong performance in RNN’s.

• Modify your code to use the Penalised Tanh activation function:

• Apply this, together with dropout and filtering, on your previously 
modified data set for training.

• Test your infer.py with this new function as well. 

𝑓 𝑥 := 6 tanh 𝑥 , 											𝑥 > 0
0.25 tanh 𝑥 , 			𝑥 ≤ 0



IMAGE CLASSIFICATION WITH KERAS



IMAGE CLASSIFICATION

• Another popular application of RNN’s is for the use of Image Classification.

• There are several concepts we will need to investigate before we can 
practically do this:

• Data Generators

• Data Augmentation

• Convolution, Pooling and Flattening

• After that, the rest of the code is virtually unchanged.



PROBLEM INTRODUCTION

• In this case, I have prepared a set of images for us to use for a binary 
classification problem – a group of woofs and meows taken from the 
Kraggle Cats and Dogs dataset (I’ve got the images ready for you on /fred)

Kraggle Cats and Dogs data set: https://www.microsoft.com/en-us/download/details.aspx?id=54765

These images are all of different 
dimensions (i.e. numbers of pixels) 

with varying amounts of noise.



PROBLEM INTRODUCTION

• You can git clone the scripts you’ll need through this 
repository.

AND/OR you can pull it from /fred/oz989/IMAGE_DATA   
- all of the files you’ll need for this are there. 

• Copy it into a directory in your home folder – you’ll also 
need to set up these directories:

git clone https://github.com/archembaud/ADACS_ML_D test

dogs

cats

train

dogs

cats

preview

DIRECTORY

Set up your files / folders now



PROBLEM INTRODUCTION

• Each one of the 4 training and test folders – cats and dogs 
respectively – ought to hold the JPG files used for this 
demonstration.

• You’ll need to move the tar.gz files into the correct 
locations, and unzip them.

• There are 1000 training images (cats and dogs, 2000 total) 
and 100 test images (200 total) – 2200 images all together.

test

dogs

cats

train

dogs

cats

preview

DIRECTORY

Let’s get this down now, please.

100 jpg files

100 jpg files

1000 jpg files

1000 jpg files



DATA GENERATORS

• The amount of data involved with image classification can be quite large –
in this case, we only have 2400 images (2000 train, 200 test) but even so, 
the amount of data is quite large compared to previous examples.

• Best practice in this case is to make use of data generators – this allows 
us to load data in parallel (using multiple CPU cores) along with other 
advantages (related to memory use).



DATA GENERATORS

• Using generators typically results in two major differences when 
compared to the previously covered examples:

• We do not manually load the whole data set in. We need to set up the 
generators to load data when the data is required, which happens in batches.

• We cannot use the fit() and evaluate() functions as we did before – since the 
whole dataset is never on hand. We instead use fit_generator() and 
evaluate_generator() functions.



DATA GENERATORS

• Let’s get into it – please open train.py for editing 
using whatever editor you like.

• We are looking for the train_dataget and 
test_datagen types, just a little down from the top.



DATA GENERATORS

• First, we create our train_datagen and test_datagen structures using the 
Prepare_Image_Data() functions (inside utilities.py) – back to this soon. 

• What is more important is the 2nd group of commands, and the batch size.



DATA GENERATORS

• The batch size is important because, later on when performing training and 
evaluating, data will be loaded into memory in groups of 32 (in this case).

• This means that we will have (2000//32 = 62 batches) to run through.



CONVOLUTION 

• The process of convolution in neural networks is not related to mathematical 
convolution. It’s very misleading.

• If time permits, I’ll talk to you a little about the convolution process.

• Practically, it has a lot in common with the moving filter we applied on the 1D 
data previously.



CONVOLUTION 

• You can find more info about 
convolutional layers here:

• Convolution provides volumes 
of data, depending on our 
parameters,  which needs to be 
flattened before we feed it into 
a normal NN.

https://keras.io/layers/convolutional/



OZSTAR SUBMISSIONS

• Against my better judgement, try running the script from the head node:

• It’s only 1 epoch, but it still takes quite a lot of time.  It would be pretty 
irresponsible to run this on the head (log-in) node of Ozstar.

• We need to submit a job to the Ozstar queue using sbatch.

python train.py <enter>



OZSTAR SUBMISSIONS

• There are many good examples here:

• Here is a script which would be suitable for today.

• There are only a couple of lines which might need 
special attention.

• This is not a tutorial on Ozstar job submission – but 
if you have no idea where to start, copy this. 

https://supercomputing.swin.edu.au

jobscript.sh (found in the last repository you cloned)



OZSTAR SUBMISSIONS

• Note: You automatically made yourself a copy of this 
when you git cloned the repository. Edit it with me.

• We have a couple of nodes especially allocated to us 
today for the purpose of the workshop – we gain 
access to these through --reservation:

• These nodes will be deactivated (SOON!) so, in the 
future, don’t use this.

#SBATCH –reservation=ml



OZSTAR SUBMISSIONS

• In the future, you’ll also need to run jobs through 
your own Ozstar project accounts. So the following 
line:

will also need to be replaced.

• Don’t forget to ask for a GPU since we are using 
the tensorflowgpu module..

#SBATCH –acount=oz989

Note the log.txt file for output here.



OZSTAR SUBMISSIONS

• Use sbatch to submit the job:

• You’ll get a message saying the job has been submitted, and a batch job number.

• The regular text / information which appears on the screen when you previously ran 
the jobs on the headnode will be saved to log.txt

sbatch jobscript.sh <enter> 

Username@farnarkle1 ImageClassification]$ sbatch jobscript.sh
Submitted batch job 2415377



OZSTAR SUBMISSIONS

• Edit the job.txt

• As the job goes on, more text will appear in 
this file. If it is empty, it is likely because your 
job is still running – or hasn’t started yet.

• The GPU will only allow one user access at any 
time – there are a few GPU’s on this node, but 
still – if the reserved nodes are full, your job 
will spill over into the regular Ozstar cue.



WRAPPING UP

• You’ll need to save the models and weights for job submissions on Ozstar
to be of any use. Otherwise, apart from the log.txt file, its all lost.

• I haven’t shown you how to export and load the model required for image 
classification – it is very similar to the previously listed examples; I’m sure 
you’ll figure things out on your own.



WRAPPING UP

• Tomorrow:

• You’ll be working alone (in your groups) to solve the LIGO signal classification 
problem. This will be shared with you tomorrow.

• You can also work on your own problems, or modify the image classifier I’ve 
presented here for galaxy classification (for example).

• You will absolutely need access to /fred/oz989 to get the LIGO data, but more 
info for this will be shown tomorrow morning.

See you tomorrow.


