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WELCOME BACK

• After Lachlan’s talk this morning, you (hopefully) have a clearer 
picture of the fundamentals of machine learning.

• The purpose of this session is to introduce you to Keras, and in 
a hands-on manner, apply this tool to solve a practical problem.

Please go ahead and log in (SSH in) to Ozstar now. Let us know if you run 
into troubles.



HANDS-ON COMPONENT

• Today’s workshop is a hands-on workshop – as I’m talking, I am 
expecting you to be (i) logged in to Ozstar, (ii) ready to write code 
and execute them in a remote manner, and (iii) familiar with linux
and the use of the Ozstar system in general.

• If you have not used Ozstar previously, this is a great chance - I’ll 
take regular breaks during each session to make sure all is good.



Group 1Group 0

PROBLEM DEFINITION

• Consider a binary classification problem and we are asking the AI to 
examine time series data from two different types of time series:

𝑥 𝑡 = sin	(0.1 + 0.3𝑅/)𝑥 𝑡 = 𝑠𝑞𝑢𝑎𝑟𝑒(0.1 + 0.3𝑅/)



PROBLEM DEFINITION

• Can we create a machine learning tool which is able to load the 
sequence of data from a file and be able to distinguish between 
a sine or square wave for an arbitrary frequency?

• This is the goal of this tutorial – to achieve this goal, we will use 
Keras - a high end API which runs on top of Tensorflow.  

• To train our neural network, we will need to create training 
data sets.



PROBLEM DEFINITION

• You’ll need to make copies of these training sets in your home directories.

• The best thing to do is git clone them:

• Load the git module:

• Git clone the ADACS_ML_A repository:

• Go into the Test and Train directories, and unzip the data files:

module load git/2.16.0 

git clone https://github.com/archembaud/ADACS_ML_A

tar -xvf test.tar.gz tar -xvf train.tar.gz

Go ahead and do this now. I’ll pause here until everyone has done it.



PROBLEM DEFINITION

• The data for each time series – or sequence – is separated into two 
folders:
• A training folder (./Train) which contains a large number of files used for training.

• A testing folder (./Test) which contains the data we will
use to test our model.
In each directly, we see X files (containing time series)
and Y files (containing the classification, 1 or 0).
All files are binary, double precision.



PROBLEM DEFINITION

• For your reference, these files were generated using the 
MATLAB functions included in the Train and Test folders.

• From the MATLAB command prompt, call 
Generate_Data(N) where N is an integer. This will create 
N data files, numbered from 1 to N. 

• You can see how these data files are generated –
approximately half of them will be sine waves, the other 
have square waves.

• We could modify these MATLAB scripts for multi-class 
classification problems easily.



PROBLEM DEFINITION

• The mission, theoretically, is pretty straight forward:

• Using Python (Python 2.7 to be exact), load both the training 
sets and testing sets of data.

• Use Keras / Tensorflow to build a Recurring Neural Network 
(RNN) with numerous layers to create a model.

• Use this model with our testing data to check its accuracy.

• We will use python’s matplotlib to perform some visualization of 
the accuracy obtained during the training process.



PROBLEM DEFINITION

• Questions we want to investigate at this stage are:

• How do we use the Ozstar environment to perform this work?

• How does the number of training data sets used influence the 
convergence and final accuracy?

• How many epochs are required to see acceptable results?



PREPARATION – OZSTAR MODULES

• When using Ozstar to perform computation, only several very basic tools are loaded 
when you log in.

• To load functionality into our Ozstar environment,
we use modules to load what we need.

• The modules we require are shown on the right – we could load them in one-by-one, 
but that would be a waste of time.

• Load the modules by typing ”.  script.sh <enter>” (no quotation marks). 

You’ll notice script.sh was included with your git clone. Load it now – I’ll check.



INTRODUCTION TO KERAS

• Today’s tutorial includes several python files:

• train.py – the main script which, when called, loads the training and test data 
sets, creates the Keras model and defines the neural network, performs the 
training and tests the model.

• utilities.py – a script containing simple functions for loading data from files 
and plotting using matplotlib. This is not called directly; it contains functions 
called by train.py and view.py,

• view.py – a stand-alone script which is used to inspect training data for your 
own verification purposes (i.e. sanity checking).



REVIEW OF TRAIN.PY



TRAIN.PY

• I’d like you to follow along as I 
browse through train.py.

• Move into the directory where 
your files are kept, and open 
the file with a text editor.

• If you are unfamiliar with 
editing codes through SSH, try 
nano:
nano train.py <enter> Nano does support syntax highlighting*

* Not a paid advertisement



TRAIN.PY

• As with most python scripts, 
we start by loading modules.

• After loading modules, we 
define the number of training 
data sets to load (N_train) –
here, we have 200 data sets.

• Each data set contains a time 
series with 128 elements 
(N_sequence).



TRAIN.PY

• We only load in the parts of 
Keras which we need.

• In this work, we are performing 
a neural network analysis on 
time series data - in keras, this 
form of analysis is known as a 
Sequential analysis – hence, we 
need to import Sequential.



TRAIN.PY - SEQUENTIAL

• To employ Neural Networks for learning over time sequences of data, we use 
a Recurring Neural Network (RNN).

• A Recurrent neural networks is a deep neural neural network which has, as 
the name suggests, recurring inputs to the hidden layer i.e. the output from a 
hidden layer is fed back to itself.

Image: https://medium.com/themlblog/time-series-analysis-using-recurrent-neural-networks-in-tensorflow-2a0478b00be7



TRAIN.PY - SEQUENTIAL

• Here, A – our neural network – may contain numerous layers - is repeatedly 
fed consecutive data from our time series. This is to ensure that the history of 
our time data is taken into account – that we have what we might describe as 
a Neural Memory.

• Neural memory is the ability imparted to a model to retain the input from 
previous time steps when the input is sequential.

• The same approach is used to treat image classification – but this falls outside 
the scope of this workshop.



TRAIN.PY - SEQUENTIAL

• One potential problem with very large data sets is that information – which might tend 
to be very important on a small time scale in the the large time sequence – tends to 
disappear into the background when the process is repeated over very large time 
steps.

• We can use an approach called Long-short Term Memory networks(LSTM) to solve 
this problem.

• In this case, we won’t – our sequences are quite short, and periodic – but modification 
of this script to perform this improvement over conventional RNN is quite simple.



TRAIN.PY

• Since – in this case – our data is small, we can load 
it all at once into memory.

• We create two numpy arrays (X_train and Y_train) 
to hold our training data – initially empty.

• We then load each file (one by one) using the 
read_training_data function contained in utilities.py

• We repeat the process for the testing data set.

Keras has numerous strategies for managing data which is 
too large to fit into memory in a single instance, using 

data generators.

We might have used only one variable (X_train) for both 
testing and training using splitting in Keras – you can 

google this if you are interested.



TRAIN.PY

• We start by creating a Keras Sequential model:

• The model variable holds our neural network, weights and all parameters. 

• The Sequential class also has a large number of class functions, some of which 
we will see later on in this tutorial.



TRAIN.PY

• We add hidden Neural layers to the model using the add() function.

• The first layer we are adding is a densely connected neural layer with an input of 
N_sequence – we are inputting each piece of time series data as an input - and 
an intermediate output of 16 neurons.

• Each layer has an associated activation function – in this case, it is ‘relu’ -
Rectified Linear Unit.



TRAIN.PY

• The relu function is defined as the maximum positive part of its argument tensor: 

• It has found popular use in deep learning networks 
in recent years, but is discontinuous.A smooth option 
is SmoothReLU:

• We use relu due to its ability to pass gradient 
information between subsequent iterations – allowing
us to avoid the use of LSTM for now. 

𝑓 𝑥 = max	(0, 𝑥)

𝑓 𝑥 = log 1 + exp	(𝑥)



TRAIN.PY

• We then add another layer, using a different activation function (which you might 
comment out)

• This time we use the tanh function – this is a non-linear function, which allows us to 
introduce non-linear dependences into our neural network.

• We’ve also changed the number of neurons in the layer to 8 – all of which are fully 
connected (dense). 



TRAIN.PY

• The result is something like this – only don’t pay attention to the number of neurons in 
each layer.

Input layer = our 
time series data
(128 neurons)

16 neurons

ReLU

8 neurons

TanH

1 neuron

sigmoid



TRAIN.PY

• We need to compile our Keras model before we start:

• An optimizer is a function designed to increase learning speed – we can specify these separately if 
we wish to alter the learning rate etc. – find more info here: https://keras.io/optimizers/

• Our loss function is the function used to measure the effectiveness of the learning (for the 
optimizer) – the binary cross entropy function has found favour recently for binary classification.



TRAIN.PY

• Finally we can perform our fit:

• The training process is repeated for all training sets N_epochs time – this value should 
be large enough that we demonstrate convergence on the accuracy computed during 
training. 

• To inspect this, we plot the history using the plot_history function inside utilities.py



TRAIN.PY

• Note:

• To be able to see this plot, you may need to jump through a few 
hoops:
• You will need to ensure X11 forwarding is enabled (add –X to ssh login)

• On MAC you may need XQuartz installed and running.



RESULTS

• To run your script on the head node 
(tsk tsk), move to the directory where 
your python scripts are and type:

python train.py <enter>

Run this now. If you are forwarding X (i.e. 
enabling graphics over SSH), you ought to see 

a graph showing training accuracy.



RESULTS

• After running the script with
N_epochs = 300 with 200 training sets, 
you should see convergence look like 
this.

• This was with 2 layers of neurons – you 
should experiment by adding various 
numbers (and sizes) of neuron layers; it 
will influence the accuracy 
convergence.



DISCUSSION - ACTIVATORS

• Consider the case where we have a single 
hidden neural layer and no activation 
functions.

• Hence, the relationship between input and 
output is strictly linear.

• We can see that the machine is incapable of 
learning – indicating to us that some manner 
of non-linearity exists.

https://towardsdatascience.com/exploring-activation-functions-for-neural-networks-73498da59b02



ACTIVITY TIME

• In the time remaining:

• Experiment with the activation functions and their influence on 
training accuracy convergence vs epoch.

• Try adding (or removing) additional hidden layers of neurons with 
different numbers of neurons.

• Instead of running the job on the head node, submit the job properly 
(hopefully Ozstar is not still busy; calculations are light.)

If you are happy with your results, head off to lunch. We will resume at 2pm.


