SN
BUR
*NE *

UNIVERSITY OF
TECHNOLOGY

O R A G

l'

Introduction to Sequence Classification using
KERAS

Dr. Matthew Smith, ADACS Senior Software Engineer

matthewrsmith(@swin.edu.au

T-,f
T E:
)

o

KNOW

CRICOS 00111D | NG
TOID 3059

WELCOME BACK

* After Lachlan’s talk this morning, you (hopefully) have a clearer

picture of the fundamentals of machine learning.

* The purpose of this session is to introduce you to Keras, and in

a hands-on manner, apply this tool to solve a practical problem.

Please go ahead and log in (SSH in) to Ozstar now. Let us know if you run
into troubles.

HANDS-ON COMPONENT

* Today’s workshop is a hands-on workshop — as I’'m talking, | am
expecting you to be (i) logged in to Ozstar, (ii) ready to write code
and execute them in a remote manner, and (iii) familiar with linux

and the use of the Ozstar system in general.

* If you have not used Ozstar previously, this is a great chance - I'll

take regular breaks during each session to make sure all is good.

PROBLEM DEFINITION

* Consider a binary classification problem and we are asking the Al to

examine time series data from two different types of time series:

x(t) = square(0.1 + 0.3Rp) x(t) = sin(0.1 + 0.3Rp)

Data Set 81

PROBLEM DEFINITION

* Can we create a machine learning tool which is able to load the
sequence of data from a file and be able to distinguish between

a sine or square wave for an arbitrary frequency?

* This is the goal of this tutorial — to achieve this goal, we will use

Keras - a high end APl which runs on top of Tensorflow.

* To train our neural network, we will need to create training

data sets.

eeeeeeeeeeeeeee

PROBLEM DEFINITION

* You’ll need to make copies of these training sets in your home directories.

* The best thing to do is git clone them:

* Load the git module: module load git/2.16.0

* Git clone the ADACS ML _A repository: g clone https://github.com/archembaud/ADACS_ML_A

* Go into the Test and Train directories, and unzip the data files:

tar -xvf test.tar.gz tar -xvf train.tar.gz

Go ahead and do this now. I'll pause here until everyone has done it.

PROBLEM DEFINITION

* The data for each time series — or sequence — is separated into two
folders:
* A training folder (./Train) which contains a large number of files used for training.

* A testing folder (./Test) which contains the data we will X SEodet K 2odet Koot Y agodat ¥ 2e0.dat ¥ 381.det

X _16.dat X _208.dat X _6@.dat Y 18@.dat Y 141.dat Y _182.dat
use to test our model. X_168.dat X_200.dat X é1.dat Y_101.dat Y_142.dat Y_183.dat
X _161.dat X _21.dat X _62.dat Y _182.dat Y _143.dat Y_184.dat

s - . - : . X_162.dat X_22.dat X _63.dat Y_183.dat Y_144.dat Y_185.dat

In each directly, we see X files (containing time series) T lerit Ve Ve
X _164.dat X _24.dat X _65.dat Y _185.dat Y _146.dat Y _187.dat

andY files (containing the classification, | or 0) X_165.dat X_25.dat X_é6.dat Y_1@6.dat Y_147.dat Y_188.dat
X_166.dat X_26.dat X_67.dat Y_187.dat Y_148.dat Y_189.dat

i i Qi X_167.dat X_27.dat X_68.dat Y_1@8.dat Y_149.dat Y_19.dat

All files are blnary, double PreECISION. X_168.dat X_28.dat X_69.dat Y_189.dat Y_15.dat Y_198.dat

X_169.dat X_29.dat X_7.dat Y_11.dat Y_1568.dat Y_191.dat
X_17.dat X_3.dat X_76.dat Y_118.dat Y_151.dat Y_192.dat

PROBLEM DEFINITION

function [u] = Generate_Data(N)

% Dr. Matthew Smith, Swinburne University of Technology
% Generate N data files, each containing a time series

% (i.e. sequence) corresponding to one of two classes:

%Y =8 : Sine Wave
%
%
%

Y = 1 : Square wave
Each file will employ a different phase and frequency
so give the RNN some degree of challenge.

* For your reference, these files were generated using the
MATLAB functions included in the Train and Test folders. Sequence. size

128; % 128 values in each time series

for i = 1:1:N

* From the MATLAB command prompt, call , ,
sprintf('X_%d.dat', 1i);

filename_y sprintf('Y_%d.dat', 1i);

Generate_Data(N) where N is an integer. This will create 3¢ foamils < o)
% Make a sin wave
N data files, numbered from | to N. freq = 0.1 + rand()+0.3;
y = 9]
1:

filename_x

X 1:128;
fx = sin(freq#x);

* You can see how these data files are generated —

else
. R . % Make a square wave
approximately half of them will be sine waves, the other freq = 0.1 + rand()+9.3;
y = 1;
= 1:1:128;
have square waves. fx = square(freqkx);
end
N N = % Now to save each
* We could modify these MATLAB scripts for multi-class fileID = fopen(filename_x, 'w');
: fwrite(fileID, fx, 'double');
ol g g fclose(filelD);
classification problems easily. ES1e10 = fones(Tileneme v, ')}

PROBLEM DEFINITION

* The mission, theoretically, is pretty straight forward:

* Using Python (Python 2.7 to be exact), load both the training
sets and testing sets of data.

* Use Keras / Tensorflow to build a Recurring Neural Network

(RNN) with numerous layers to create a model.
* Use this model with our testing data to check its accuracy.

* We will use python’s matplotlib to perform some visualization of

the accuracy obtained during the training process.

PROBLEM DEFINITION

* Questions we want to investigate at this stage are:

* How do we use the Ozstar environment to perform this work!?

* How does the number of training data sets used influence the

convergence and final accuracy?

* How many epochs are required to see acceptable results?

PREPARATION — OZSTAR MODULES

When using Ozstar to perform computation, only several very basic tools are loaded

when you log in. module purge all

module load numpy/1.14.1-python-2.7.14
. c o c module load tensorflowgpu/l1.6.0-python-2.7.14
To load functionality into our Ozstar environment, nodule 1oad scikit-learn/@.19.1-python-2.7.14
module load pandas/8.22.0-python-2.7.14
we use modules to load what we need. module load keras/2.1.4-python-2.7.14

The modules we require are shown on the right — we could load them in one-by-one,

but that would be a waste of time.

* Load the modules by typing ”. script.sh <enter>" (no quotation marks).

You'll notice script.sh was included with your git clone. Load it now — I'll check.

KNOW

IN[€

INTRODUCTION TO KERAS

* Today’s tutorial includes several python files:

* train.py — the main script which, when called, loads the training and test data
sets, creates the Keras model and defines the neural network, performs the
training and tests the model.

* utilities.py — a script containing simple functions for loading data from files
and plotting using matplotlib. This is not called directly; it contains functions
called by train.py and view.py,

* view.py — a stand-alone script which is used to inspect training data for your

own verification purposes (i.e. sanity checking).

REVIEW OF TRAIN.PY

TRAIN.PY

* I'd like you to follow along as |

browse through train.py.

* Move into the directory where
your files are kept, and open
the file with a text editor.

* If you are unfamiliar with
editing codes through SSH, try
nano:

nano train.py <enter>

train.py

Written by Dr. Matthew Smith, Swinburne University of Technology
Prepared as training material for ADACS Machine Learning workshop
This is an example of time series (sequence) classification

Tt il

for a binary classification problen.

Import modules

import numpy as np

from keras.models import Sequential
from keras.layers import Dense
#from keras.layers import LSTM

from keras.layers import Activation
from keras.utils import plot_model
from utilities import *

Create training arrays

In this demonstration I create our numpy arrays and then
load each time sequence in one-by-one.

N_train = 200 # Number of elements to train
N_sequence = 128 # Length of each piece of data
N_epochs = 3686 # Nuigdes =

Nano does support syntax highlighting*
Create the training seq
X_train = np.empty([N_tra
Y_train = np.empty(N_trai

* Not a paid advertisement

TRAIN.PY

* As with most python scripts,

we start by loading modules.

* After loading modules, we
define the number of training
data sets to load (N_train) —

=)

here, we have 200 data sets.

* Each data set contains a time

series with 128 elements

(N_sequence).

=)

train.py
Written by Dr.
Prepared as
This is an example of time series (sequence)
for a binary classification problen.

Matthew Smith,

3 i i

Import modules

import numpy as np

from keras.models import Sequential
from keras.layers import Dense
#from keras.layers import LSTM

from keras.layers import Activation
from keras.utils import plot_model
from utilities import *

Create training arrays

In this demonstration I create our numpy arrays and
load each time sequence in one-by-one.

N_train = 200 # Number of elements to train
N_sequence = 128 # Length of each piece of data
N_epochs = 3686 # Number of epochs

Create the q

X_train =
Y_train =

training sequence data (X) and each
np.empty([N_train, N_sequence])
np.empty(N_train)

wC L =

Swinburne University of Tec
training material for ADACS Machine Lear
classif

ning workshop
ication

then

classificat

TRAIN.PY

* We only load in the parts of
Keras which we need.

* In this work, we are performing
a neural network analysis on
time series data - in keras, this
form of analysis is known as a

Sequential analysis — hence, we

need to import Sequential.

g train.py
Written by Dr. Matthew Smith, Swinburne University of Technology
Prepared as training material ‘or ADACS Machine Learning workshop
This 1s an example of time series (sequence) classification

S 14

for a binary classification problen.

Import modules

import numpy as np

from keras.models import Sequential
from keras.layers import Dense
#from keras.layers import LSTM

from keras.layers import Activation
from keras.utils import plot_model
from utilities import *

Create training arrays

In this demonstration I create our numpy arrays and then

load each time sequence in one-by-one.

N_train = 200 # Number of elements to train

N_sequence = 128 # Length of each piece of data

N_epochs = 3686 # Number of epochs

Create the training sequence data (X) and each set's classificat

np.empty([N_train, N_sequence])
np.empty(N_train)

X_train
Y_train

TRAIN.PY - SEQUENTIAL

* To employ Neural Networks for learning over time sequences of data, we use
a Recurring Neural Network (RNN).

* A Recurrent neural networks is a deep neural neural network which has, as

the name suggests, recurring inputs to the hidden layer i.e. the output from a

hidden layer is fed back to itself.

=

[

®
I

A

— A

®)
1

®
I

'y

TRAIN.PY - SEQUENTIAL

* Here, A — our neural network — may contain numerous layers - is repeatedly
fed consecutive data from our time series. This is to ensure that the history of

our time data is taken into account — that we have what we might describe as

a Neural Memory.

* Neural memory is the ability imparted to a model to retain the input from

previous time steps when the input is sequential.

* The same approach is used to treat image classification — but this falls outside

the scope of this workshop.

TRAIN.PY - SEQUENTIAL

* One potential problem with very large data sets is that information — which might tend
to be very important on a small time scale in the the large time sequence — tends to
disappear into the background when the process is repeated over very large time
steps.

* We can use an approach called Long-short Term Memory networks(LSTM) to solve
this problem.

* In this case, we won’t — our sequences are quite short, and periodic — but modification

of this script to perform this improvement over conventional RNN is quite simple.

TRAIN.PY

e Since — in this case — our data is small, we can load

it all at once into memory.

Create the training sequence data (X) and each set's classification (Y).
* We create two numpy arrays (X_train and Y_train) | X-tsin - ne.empty((N cxsin, Noseauence)
to hold our training data — initially empty. ‘f 020 the data fron file
or x in range(N_train):
This will create x = 08, 1, 2...to N_train-1
° We then |OaC| each f||e (One b)’ One) USing the ‘ X_trainlx,), Y_train(x] = read_training_data(x+1, N_sequence)
Also create the numpy arrays for the testing data set

read_training_data function contained in utilities.py i3 T ik cest, n sequence
= np.empty(N_test)
for x in range(N_test):

® We repeat the Process for the testlng data Set. X_testlx,), Y_test(x] = read_test_datal(x+1, N_sequence)

We might have used only one variable (X _train) for both Keras has numerous strategies for managing data which is
testing and training using splitting in Keras — you can too large to fit into memory in a single instance, using

google this if you are interested. data generators.

TRAIN.PY

* We start by creating a Keras Sequential model:

Create our Keras model - an RNN (in Keras this is a Sequence)

model = Sequentiall)

Configure our RNN by adding neural layers with activation functions
model.add(Dense(16, activation= lu',input_dim=N_sequence))

model.add(Dense(8, activation=
model.add(Dense(1l, activation=

* The model variable holds our neural network, weights and all parameters.

* The Sequential class also has a large number of class functions, some of which

we will see later on in this tutorial.

TRAIN.PY

* We add hidden Neural layers to the model using the add() function.

Create our Keras model - an RNN (in Keras this is a Sequence
model = Sequential()

Configure our RNN by adding neural layers with activation functions
model.add(Dense(16, activation= ,input_dim=N_sequence))

‘ model.add(Dense(8, activation=))
model.add(Dense(1, activation=))

* The first layer we are adding is a densely connected neural layer with an input of
N_sequence — we are inputting each piece of time series data as an input - and

an intermediate output of |6 neurons.

* Each layer has an associated activation function — in this case, it is ‘relu’ -
Rectified Linear Unit.

TRAIN.PY

* The relu function is defined as the maximum positive part of its argument tensor:

f(x) = max(0, x)

* It has found popular use in deep learning networks -

in recent years, but is discontinuous.A smooth option
is SmoothReLU:

f(x) =log(1 + exp(x)) T

* We use relu due to its ability to pass gradient .

RelU
SmoothRelLU

information between subsequent iterations — allowing

us to avoid the use of LSTM for now.

TRAIN.PY

* We then add another layer, using a different activation function (which you might

comment OUt) # Create our Keras model — an RNN (in Keras this 1s a Sequence)
model = Sequentiall)
Configure our RNN by adding neural layers with activation functions
' model.add(Dense(16, activation= ,input_dim=N_sequence))

model.add(Dense(8, activation=
model.add(Dense(1, activation=

* This time we use the tanh function — this is a non-linear function, which allows us to

introduce non-linear dependences into our neural network.

* We've also changed the number of neurons in the layer to 8 — all of which are fully

connected (dense).

TRAIN.PY

* The result is something like this — only don’t pay attention to the number of neurons in
each layer.

Input layer = our

time series data
(128 neurons)

input layer
hidden layer 1 hidden layer 2

| 6 neurons 8 neurons

TRAIN.PY

* We need to compile our Keras model before we start:

Compile model and print summary
‘ model.compile(optimizer= , loss= : /', metrics=|
print(model.summary())

Fit the model using the training set
history = model.fit(X_train, Y_train, epochs=N_epochs, batch_size=32)

Plot the history
plot_history(history)

* An optimizer is a function designed to increase learning speed — we can specify these separately if

we wish to alter the learning rate etc. — find more info here: https://keras.io/optimizers/

* Our loss function is the function used to measure the effectiveness of the learning (for the

optimizer) — the binary cross entropy function has found favour recently for binary classification.

TRAIN.PY

* Finally we can perform our fit:

Compile model and print summary
model.compileloptimizer="'rmspr , loss='binary_crosse ‘ropy', metrics=[racy']
print(model.summary())

Fit the model using the training set
‘history = model.fit(X_train, Y_train, epochs=N_epochs, batch_size=32)

Plot the hi‘:"_l]:‘y
plot_history(history)

* The training process is repeated for all training sets N_epochs time — this value should
be large enough that we demonstrate convergence on the accuracy computed during

training.

* To inspect this, we plot the history using the plot_history function inside utilities.py

TRAIN.PY

* Note: | |
Ote. # Compile model and print summary
model.compileloptimizer="'rmsp: , loss='binary_c1 ‘ropy', metrics=| racy ']
print(model.summary())

Fit the model using the training set
history = model.fit(X_train, Y_train, epochs=N_epochs, batch_size=32)

‘;lfmir;l;:gr;}h;;ééry
* To be able to see this plot, you may need to jump through a few
hoops:

* You will need to ensure XI | forwarding is enabled (add —X to ssh login)

* On MAC you may need XQuartz installed and running.

Epoch 294/368

200/200 [] - 8s 1léus/step - loss: 1.3949e-87 - acc: 1.8880
Epoch 295/388

200/200 [] - 8s léus/step - loss: 1.3738e-87 - acc: 1.8000
Epoch 296/388
200/200 [] - 8s 1léus/step - loss: 1.3538e-87 - acc: 1.8000
Epoch 297/388
200/200 [] - 8s 1léus/step - loss: 1.3339e-87 - acc: 1.8000
Epoch 298/388
200/200 [] - 8s 1léus/step - loss: 1.3156e-87 - acc: 1.8880
Epoch 299/388
. 208/200 [] - 8s 1léus/step - loss: 1.2975e-87 - acc: 1.0000
* To run your script on the head node cpoch 300/309
200/200 [] - 8s 1léus/step - loss: 1.2801e-87 - acc: 1.8000
. Evaluating Test Set
58/50 [] - 8s 221us/step
(tsk tsk), move to the directory where o/ (-==ree

your python scripts are and type:

python train.py <enter>

Accuracy Convergence History

Run this now. If you are forwarding X (i.e.
enabling graphics over SSH), you ought to see
a graph showing training accuracy.

RESULTS

Accuracy Convergence History

* After running the script with
N_epochs = 300 with 200 training sets,
you should see convergence look like 0.9 1
this.

1.0

* This was with 2 layers of neurons — you

Accuracy

should experiment by adding various 0.7 1

numbers (and sizes) of neuron layers; it .

will influence the accuracy

convergence. 0.5 1

0 50 100 150 200 250

DISCUSSION - ACTIVATORS

* Consider the case where we have a single Accuracy Convergence History

hidden neural layer and no activation

functions.

* Hence, the relationship between input and
output is strictly linear. 04

* We can see that the machine is incapable of

learning — indicating to us that some manner | | | | | | |
0 50 100 150 200 250 300
Epoch

of non-linearity exists.

ACTIVITY TIME

* In the time remaining:

* Experiment with the activation functions and their influence on

training accuracy convergence vs epoch.

* Try adding (or removing) additional hidden layers of neurons with

different numbers of neurons.

* Instead of running the job on the head node, submit the job properly

(hopefully Ozstar is not still busy; calculations are light.)

If you are happy with your results, head off to lunch.VWe will resume at 2pm.

