
CRICOS 00111D
TOID 3059

Application of Filtering and Dropout in NN
using KERAS

Dr. Matthew Smith, ADACS Senior Software Engineer
matthewrsmith@swin.edu.au

PRELIMINARIES

• I hope you all enjoyed lunch.

• As soon as convenient, please re-connect to Ozstar, and create a new folder in your
home directory for this session.

Please go ahead and log in (SSH in) to Ozstar now.

PROBLEM DEFINITION

• In the previous section, the classification problem we encountered was quite simple –
two distinct different types of signals, resulting in a relatively simple classification task:

𝑥 𝑡 = sin	(0.1 + 0.3𝑅/)𝑥 𝑡 = 𝑠𝑞𝑢𝑎𝑟𝑒(0.1 + 0.3𝑅/)

PROBLEM DEFINITION

• In reality, however, many signals which require classification are not so clean, and
include noise.

• This noise can be in the form of grain (in an image), or one-dimensional white noise
in an array of data (like that encountered in audio analysis).

Image Noise (courtesy: wiki) Audio Noise

PROBLEM DEFINITION

• Humans, being experts in pattern recognition, are often able to understand the nature of the
noise, and then see past it when performing classification tasks.

• The problem is that the Neural Network – which will search for features in the data – will not
be able to understand the nature of random noise (natively).

• The purpose of this session is to employ two strategies to aid us in overcoming the problem:

• Use filtering and smoothing to help us remove noise from the signal using scipy filters, and

• Use dropout to prevent the NN overfitting to noise.

WARMING UP

• First things first – let’s get copies of the files you’ll need for this session.

• Don’t forget to load the git module:

• In your preferred directory, go ahead and do the git-clone:

• And load the other things you’ll need in script.sh. Also, if you haven’t got X11
forwarding enabled, go ahead and get that set up.

module load git/2.16.0

git clone https://github.com/archembaud/ADACS_ML_B

We’ll pause here until we’re all prepared.

FILTERING IN PYTHON
USING SCIPY

• Let’s have a look at filter_demo.py.

• Please open it for editing.

Go ahead and do this now. I’ll pause
here until everyone has done it.

FILTERING IN PYTHON
USING SCIPY

• Here is the python script we shall use to
test out our low pass filter of choice –
the Butterworth filter.

• The top sections are typical imports –
don’t forget to use tkagg if you want to
use X11 forwarding with matplotlib on
ozstar (otherwise you won’t see
anything).

FILTERING IN PYTHON
USING SCIPY

• The first real port of call is to generate the signal
data – our pure signal looks like this:

FILTERING IN PYTHON
USING SCIPY

• After which we add noise – this noise is
normally distributed noise with a mean
of 0 and variance of 0.0025 (that’s 0. 052)

FILTERING IN PYTHON USING SCIPY

• Let’s have a closer look:

• Our mission will be to filter this
result to remove the noise, which
is present in a higher frequency
than the two lower frequencies
present in the real signal.

• Let’s create our filter.

FILTERING IN PYTHON
USING SCIPY

• To get things going, we use the signal.butter
function to create parameters a and b.

• These are the filter coefficients – basically
one dimensional arrays of length
(ORDER+1).

• These are created when we call the
function:

b,a = signal.butter(ORDER, WN)

FILTERING IN PYTHON
USING SCIPY

• There is quite a lot of control systems theory
associated with the use of low pass filters, which
will not be covered here. Hence we will only
briefly cover the details:

• In this code, we employ a 3rd order filter
(ORDER=3). This roughly corresponds to the
“range” of data examined when performing
filtering on any single value in our array of data.

• The value of Wn – in this case – is a normalised
cutoff frequency.

FILTERING IN PYTHON
USING SCIPY

• The final part of this demonstration is
simply plotting the result using
matplotlib.

• Let’s have a quick look at the influence of
the value of WN (here = 0.005) on the
final result…

Go ahead and run this script. You’ll need X11
forwarded and working to see the result.

FILTERING IN PYTHON USING SCIPY

• Here, a 3rd order filter is used with a
normalized cutoff value of 0.1

• We can see that the we have not
successfully removed the noise – we
need to lower the cutoff frequency to
remove some of the higher frequency
noise present.

• Let’s lower the cutoff frequency and see
what happens…

FILTERING IN PYTHON USING SCIPY

• Please modify your codes to use
different cutoffs.

• Please use cutoff values of 0.1 and 0.05.

Make changes to the code, and
examine the results. I’ll wait here.

FILTERING IN PYTHON USING SCIPY

Cutoff = 0.1 Cutoff = 0.05

FILTERING IN PYTHON USING SCIPY

• So this result represents something closer
to what we are looking to achieve - we
have almost recovered the correct result.

• What happens if we continue to decrease
the value of the cutoff frequency?

Cutoff = 0.05Re-run your codes with cutoff values of
0.01 and 0.005. I’ll wait here.

FILTERING IN PYTHON USING SCIPY

Cutoff = 0.01 Cutoff = 0.005

FILTERING IN PYTHON USING SCIPY

Cutoff = 0.005

• You can see that, with a normalized cutoff
frequency of 0.005, we have completely
attenuated the higher frequency component
of the real signal – which is bad news.

• So don’t go too far!

• We can examine frequency response graphs
for more insight into which frequencies are
kept – google this in your own time.

FILTERING IN PYTHON USING SCIPY

• On another note – if the contribution of the noise is larger, we will need a
lower normalized cutoff frequency in order to correctly capture the signal
we want.

• Using this approach, it is possible to see surprisingly small artefacts hidden
under quite a lot of noise.

DROPOUT IN NEURAL NETWORKS

OVERFITTING

• Even after we have implemented a filter to
remove noise from our sequence, we will
still have something resembling noise in the
result.

• Consider this signal here – we have
managed to capture the basic shape of the
real signal, but small perturbations remain.

OVERFITTING

• The Neural Network which takes this signal
for training has no idea that these
perturbations aren’t key elements of the real
signal.

• Hence, it may attempt to focus on these
features while learning – the process of
attempting to include random elements into
model construction in NN’s is known as
overfitting.

OVERFITTING

• This is conceptually demonstrated with a
regression problem (as shown on the right).

• Given the points shown, can we create a
polynomial expression which demonstrates the
relationship between X and Y?

• Shown is: a linear relationship (y = mx+c)
passing in a least-squares manner through the
points, and a 12th order polynomial passing
through all the points.

Y

X

PREVENTING OVERFITTING

• There are two strategies we might employ to prevent overfitting:

• Reduce the number of neural connections – use fewer hidden layers, or
fewer neurons in each layer. The more connections present, the more
complex a model the NN may construct – which has a tendency to
overfit on features such as outlying data points or random fluctuations.

• Use Dropout - this is the process of ignoring randomly selected neurons
in your NN in the training process.

PREVENTING OVERFITTING

• By randomly removing
neurons from the network,
we are forcing the network
to search for more
persistent relationships in
our network and input data.

• The consequence of this –
the network takes longer to
train, as it is forced to search
for deeper relationships.

Srivastava, Nitish, et al. ”Dropout: a simple way to prevent neural networks from overfitting”, JMLR 2014

DROPOUT

• Wiki Definition:

• Consider our previously implemented NN for our sequence classification.

According to Wikipedia — 
The term “dropout” refers to dropping out units (both hidden and visible) in a neural network.

The number of neurons in the input layer
is the same length as our sequence.

DROPOUT

• We can add dropout on the input by modifying our code slightly:

Previous Code

Simple Modification to include Dropout

DROPOUT

• The first argument is the fraction of neurons to be dropped from the input layer
during training. In this case, 20% of the input neurons (N_sequence of them) will be
dropped randomly during training.

• Note: The input shape (or dimension) is required to be included in the first input into
the Keras model – we do not need to reiterate this dimension in the 2nd argument,
hence we can also write:

OK Also OK

DROPOUT

• To add dropout in the hidden layers, we can simply place our dropout command
between the layers we wish dropout to occur in.

• We cannot use dropout on the output neurons – this would be counterproductive,
especially in a binary classification problem such as the ones we are looking at.

Again, in this case, no dimension is required as it is implied from the number of
neurons specified in the previous and next layer.

DROPOUT

• To add dropout in the hidden layers, we can simply place our dropout command
between the layers we wish dropout to occur in.

• We cannot use dropout on the output neurons – this would be counterproductive,
especially in a binary classification problem such as the ones we are looking at.

Again, in this case, no dimension is required as it is implied from the number of
neurons specified in the previous and next layer.

DROPOUT

• To add dropout in the hidden layers, we can simply place our dropout command
between the layers we wish dropout to occur in.

• We cannot use dropout on the output neurons – this would be counterproductive,
especially in a binary classification problem such as the ones we are looking at.

Again, in this case, no dimension is required as it is implied from the number of
neurons specified in the previous and next layer.

DROPOUT

• Let’s do it. In your recently cloned git repository is a new file (train.py) which includes
dropout on the input layer.

• To use it:

• You’ll need to copy the test and training data over from the previous session.

• After loading the proper modules (. script.sh), train away:

Best way to do this depends on your chosen file structure: perhaps cp -r Train ./../../ADACS_B/ADACS_ML_B/

Copy the training and test data.

python train.py <enter>

DROPOUT

• You should see something like this:
with the default dropout included on
the input layer (0.5), the convergence
is much slower (as expected).

• The accuracy on the test set ought to
be 100% despite the seemingly
incomplete training here.

DROPOUT EFFECTIVENESS

Srivastava, Nitish, et al. ”Dropout: a simple way to prevent neural networks from overfitting”, JMLR 2014

• Dropout has been demonstrated to improve
classification error, especially when said errors are due
to overfitting.

• This is not free:

• We often need more neurons in the hidden layers of the
network;

• The speed of training is reduced – more epochs are
required before convergence occurs.

• It is also very difficult to predict what fraction of
dropout to use, and where.

DROPOUT EFFECTIVENESS

Srivastava, Nitish, et al. ”Dropout: a simple way to prevent neural networks from overfitting”, JMLR 2014

• Some of the published improvements due to the use of dropout seem
pretty minor…

That being said, it is possible to see large improvements.

APPLICATION – LIGO SIGNALS
Preview for tomorrow…

APPLICATION – LIGO SIGNAL CLASSIFICATION

• Consider the binary classification of LIGO signals, where a gravity wave is
either (i) present, or (ii) not present, and the signal is masked with
Gaussian noise:

APPLICATION – LIGO SIGNAL CLASSIFICATION

• The EXACT details will not be shown here, as it is an activity for you to complete in the next phase of
the workshop.

• However, the use of dropout on the input layer of neurons is useful here since (i) our data set contains
large random fluctuations, and (ii) the data set is quite large.

• In this case, dropout has a significant effect on classification accuracy:

Run 1 2 3 4 5 6 7 8 9 10

Dropout 99% 94% 96% 97% 97% 98% 98% 95% 97% 97%

No
Dropout

65% 69% 69% 67% 68% 67% 68% 69% 73% 65%

DRAWBACKS

• It’s not all sunshine and lollypops – you will have to experiment with the many factors
involved before you see an improvement with the use of dropout.

• It is likely (almost expected) that your first attempt to use dropout will produce worse
performance.

• It’s important to keep an eye on the loss during training to ensure convergence has been
reached – if the loss is still high (> 0.05) then I recommend increasing the number of epochs.
This is no guarantee of success, however.

• In the end, all ML tools require tuning of some sort – this is no exception.

ACTIVITY

• Rewrite your previous ML codes – the square and sine wave classifiers – to include
Gaussian noise. You might create a new function to do this.

• Create a function filter_data(X) which returns the filtered data. Try using different
filters, such as the Butterworth filter and the Chebyshev 1D filter. You can find help
by googling “scipy filter”.

• Implement dropout on the input layer, and experiment with the fraction of dropout
and observe its effect on learning speed and accuracy. You may need to experiment
with the number of neurons in the network, but keep it fixed initially.

If you are happy with your results, have a break. Get some coffee.

