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PRELIMINARIES

• I hope you all enjoyed lunch.

• As soon as convenient, please re-connect to Ozstar, and create a new folder in your 
home directory for this session.

Please go ahead and log in (SSH in) to Ozstar now. 



PROBLEM DEFINITION

• In the previous section, the classification problem we encountered was quite simple –
two distinct different types of signals, resulting in a relatively simple classification task:

𝑥 𝑡 = sin	(0.1 + 0.3𝑅/)𝑥 𝑡 = 𝑠𝑞𝑢𝑎𝑟𝑒(0.1 + 0.3𝑅/)



PROBLEM DEFINITION

• In reality, however, many signals which require classification are not so clean, and 
include noise.

• This noise can be in the form of grain (in an image), or one-dimensional white noise 
in an array of data (like that encountered in audio analysis).

Image Noise (courtesy: wiki) Audio Noise



PROBLEM DEFINITION

• Humans, being experts in pattern recognition, are often able to understand the nature of the 
noise, and then see past it when performing classification tasks. 

• The problem is that the Neural Network – which will search for features in the data – will not 
be able to understand the nature of random noise (natively).

• The purpose of this session is to employ two strategies to aid us in overcoming the problem:

• Use filtering and smoothing to help us remove noise from the signal using scipy filters, and

• Use dropout to prevent the NN overfitting to noise.



WARMING UP

• First things first – let’s get copies of the files you’ll need for this session.

• Don’t forget to load the git module:

• In your preferred directory, go ahead and do the git-clone:

• And load the other things you’ll need in script.sh. Also, if you haven’t got X11 
forwarding enabled, go ahead and get that set up.

module load git/2.16.0 

git clone https://github.com/archembaud/ADACS_ML_B

We’ll pause here until we’re all prepared.



FILTERING IN PYTHON 
USING SCIPY

• Let’s have a look at filter_demo.py.

• Please open it for editing.

Go ahead and do this now. I’ll pause 
here until everyone has done it.



FILTERING IN PYTHON 
USING SCIPY

• Here is the python script we shall use to 
test out our low pass filter of choice –
the Butterworth filter.

• The top sections are typical imports –
don’t forget to use tkagg if you want to 
use X11 forwarding with matplotlib on 
ozstar (otherwise you won’t see 
anything).



FILTERING IN PYTHON 
USING SCIPY

• The first real port of call is to generate the signal 
data – our pure signal looks like this:



FILTERING IN PYTHON 
USING SCIPY

• After which we add noise – this noise is 
normally distributed noise with a mean 
of 0 and variance of 0.0025 (that’s 0. 052)



FILTERING IN PYTHON USING SCIPY

• Let’s have a closer look:

• Our mission will be to filter this 
result to remove the noise, which 
is present in a higher frequency 
than the two lower frequencies 
present in the real signal.

• Let’s create our filter.



FILTERING IN PYTHON 
USING SCIPY

• To get things going, we use the signal.butter
function to create parameters a and b.

• These are the filter coefficients – basically 
one dimensional arrays of length 
(ORDER+1).

• These are created when we call the 
function:

b,a = signal.butter(ORDER, WN)



FILTERING IN PYTHON 
USING SCIPY

• There is quite a lot of control systems theory 
associated with the use of low pass filters, which 
will not be covered here. Hence we will only 
briefly cover the details:

• In this code, we employ a 3rd order filter 
(ORDER=3). This roughly corresponds to the 
“range” of data examined when performing 
filtering on any single value in our array of data.

• The value of Wn – in this case – is a normalised 
cutoff frequency.  



FILTERING IN PYTHON 
USING SCIPY

• The final part of this demonstration is 
simply plotting the result using 
matplotlib.

• Let’s have a quick look at the influence of 
the value of WN (here = 0.005) on the 
final result…

Go ahead and run this script. You’ll need X11 
forwarded and working to see the result.



FILTERING IN PYTHON USING SCIPY

• Here, a 3rd order filter is used with a 
normalized cutoff value of 0.1

• We can see that the we have not 
successfully removed the noise – we 
need to lower the cutoff frequency to 
remove some of the higher frequency 
noise present.

• Let’s lower the cutoff frequency and see 
what happens…



FILTERING IN PYTHON USING SCIPY

• Please modify your codes to use 
different cutoffs.

• Please use cutoff values of 0.1 and 0.05.

Make changes to the code, and 
examine the results. I’ll wait here.



FILTERING IN PYTHON USING SCIPY

Cutoff = 0.1 Cutoff = 0.05



FILTERING IN PYTHON USING SCIPY

• So this result represents something closer 
to what we are looking to achieve - we 
have almost recovered the correct result.

• What happens if we continue to decrease 
the value of the cutoff frequency?

Cutoff = 0.05Re-run your codes with cutoff values of 
0.01 and 0.005. I’ll wait here.



FILTERING IN PYTHON USING SCIPY

Cutoff = 0.01 Cutoff = 0.005



FILTERING IN PYTHON USING SCIPY

Cutoff = 0.005

• You can see that, with a normalized cutoff
frequency of 0.005, we have completely 
attenuated the higher frequency component 
of the real signal – which is bad news.

• So don’t go too far!

• We can examine frequency response graphs 
for more insight into which frequencies are 
kept – google this in your own time.



FILTERING IN PYTHON USING SCIPY

• On another note – if the contribution of the noise is larger, we will need a 
lower normalized cutoff frequency in order to correctly capture the signal 
we want.

• Using this approach, it is possible to see surprisingly small artefacts hidden 
under quite a lot of noise.



DROPOUT IN NEURAL NETWORKS



OVERFITTING

• Even after we have implemented a filter to 
remove noise from our sequence, we will 
still have something resembling noise in the 
result.

• Consider this signal here – we have 
managed to capture the basic shape of the 
real signal, but small perturbations remain.



OVERFITTING

• The Neural Network which takes this signal 
for training has no idea that these 
perturbations aren’t key elements of the real 
signal.

• Hence, it may attempt to focus on these 
features while learning – the process of 
attempting to include random elements into 
model construction in NN’s is known as 
overfitting.



OVERFITTING

• This is conceptually demonstrated with a 
regression problem (as shown on the right).

• Given the points shown, can we create a 
polynomial expression which demonstrates the 
relationship between X and Y?

• Shown is: a linear relationship (y = mx+c) 
passing in a least-squares manner through the 
points, and a 12th order polynomial passing 
through all the points.

Y

X



PREVENTING OVERFITTING

• There are two strategies we might employ to prevent overfitting:

• Reduce the number of neural connections – use fewer hidden layers, or 
fewer neurons in each layer. The more connections present, the more 
complex a model the NN may construct – which has a tendency to 
overfit on features such as outlying data points or random fluctuations.

• Use Dropout - this is the process of ignoring randomly selected neurons 
in your NN in the training process.



PREVENTING OVERFITTING

• By randomly removing 
neurons from the network, 
we are forcing the network 
to search for more 
persistent relationships in 
our network and input data.

• The consequence of this –
the network takes longer to 
train, as it is forced to search 
for deeper relationships.

Srivastava, Nitish, et al. ”Dropout: a simple way to prevent neural networks from overfitting”, JMLR 2014



DROPOUT

• Wiki Definition:

• Consider our previously implemented NN for our sequence classification.

According to Wikipedia — 
The term “dropout” refers to dropping out units (both hidden and visible) in a neural network.

The number of neurons in the input layer 
is the same length as our sequence.



DROPOUT

• We can add dropout on the input by modifying our code slightly:

Previous Code

Simple Modification to include Dropout



DROPOUT

• The first argument is the fraction of neurons to be dropped from the input layer 
during training. In this case, 20% of the input neurons (N_sequence of them) will be 
dropped randomly during training.

• Note:  The input shape (or dimension) is required to be included in the first input into 
the Keras model – we do not need to reiterate this dimension in the 2nd argument, 
hence we can also write:

OK Also OK



DROPOUT

• To add dropout in the hidden layers, we can simply place our dropout command 
between the layers we wish dropout to occur in.

• We cannot use dropout on the output neurons – this would be counterproductive, 
especially in a binary classification problem such as the ones we are looking at.

Again, in this case, no dimension is required as it is implied from the number of 
neurons specified in the previous and next layer.
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DROPOUT

• To add dropout in the hidden layers, we can simply place our dropout command 
between the layers we wish dropout to occur in.
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DROPOUT

• Let’s do it.  In your recently cloned git repository is a new file (train.py) which includes 
dropout on the input layer.

• To use it:

• You’ll need to copy the test and training data over from the previous session.

• After loading the proper modules (. script.sh), train away: 

Best way to do this depends on your chosen file structure: perhaps         cp -r Train ./../../ADACS_B/ADACS_ML_B/

Copy the training and test data. 

python train.py <enter>



DROPOUT

• You should see something like this: 
with the default dropout included on 
the input layer (0.5), the convergence 
is much slower (as expected).

• The accuracy on the test set ought to 
be 100% despite the seemingly 
incomplete training here.



DROPOUT EFFECTIVENESS

Srivastava, Nitish, et al. ”Dropout: a simple way to prevent neural networks from overfitting”, JMLR 2014

• Dropout has been demonstrated to improve 
classification error, especially when said errors are due 
to overfitting.

• This is not free:

• We often need more neurons in the hidden layers of the 
network; 

• The speed of training is reduced – more epochs are 
required before convergence occurs.

• It is also very difficult to predict what fraction of 
dropout to use, and where.



DROPOUT EFFECTIVENESS

Srivastava, Nitish, et al. ”Dropout: a simple way to prevent neural networks from overfitting”, JMLR 2014

• Some of the published improvements due to the use of dropout seem 
pretty minor…

That being said, it is possible to see large improvements.



APPLICATION – LIGO SIGNALS
Preview for tomorrow…



APPLICATION – LIGO SIGNAL CLASSIFICATION

• Consider the binary classification of LIGO signals, where a gravity wave is 
either (i) present, or (ii) not present, and the signal is masked with 
Gaussian noise: 



APPLICATION – LIGO SIGNAL CLASSIFICATION

• The EXACT details will not be shown here, as it is an activity for you to complete in the next phase of 
the workshop.

• However, the use of dropout on the input layer of neurons is useful here since (i) our data set contains 
large random fluctuations, and (ii) the data set is quite large.

• In this case, dropout has a significant effect on classification accuracy:

Run 1 2 3 4 5 6 7 8 9 10

Dropout 99% 94% 96% 97% 97% 98% 98% 95% 97% 97%

No 
Dropout

65% 69% 69% 67% 68% 67% 68% 69% 73% 65%



DRAWBACKS

• It’s not all sunshine and lollypops – you will have to experiment with the many factors 
involved before you see an improvement with the use of dropout.

• It is likely (almost expected) that your first attempt to use dropout will produce worse 
performance.

• It’s important to keep an eye on the loss during training to ensure convergence has been 
reached – if the loss is still high (> 0.05) then I recommend increasing the number of epochs. 
This is no guarantee of success, however.

• In the end, all ML tools require tuning of some sort – this is no exception.



ACTIVITY

• Rewrite your previous ML codes – the square and sine wave classifiers – to include 
Gaussian noise. You might create a new function to do this.

• Create a function filter_data(X) which returns the filtered data. Try using different 
filters, such as the Butterworth filter and the Chebyshev 1D filter.  You can find help 
by googling “scipy filter”.

• Implement dropout on the input layer, and experiment with the fraction of dropout 
and observe its effect on learning speed and accuracy. You may need to experiment 
with the number of neurons in the network, but keep it fixed initially.

If you are happy with your results, have a break. Get some coffee.


