

Goals and Projects

- Increase the sensitivity and duty cycle of GW detectors across the entire frequency band by improving the low frequency stability
- Measure low frequency seismic noise to estimate Newtonian noise
- 3. To directly measure Newtonian noise

Tilt meter—ALFRA

TorPedDo Sensor

ULF pre-isolator

CDS: LIGO type digital control

Advanced Low Frequency Rotation Sensor WESTERN AUSTRALIA

Advanced Low Frequency Rotation Accelerometer (ALFRA)

- Sensing the ground tilt and feedback to the isolation stage to reduce horizontal to tilt coupling
- Could be mounted in any orientation
 - Modelling complete
 - Bar in manufacturing stage
 - Flexure design complete
 - Vacuum chamber designed and under construction

Optical readout experimentally tested

Walk-off sensor (WOS)

Optical readout system for ALFRA

- Readout system tested
- Paper ready for P&P
- Integrated design complete

- Readout Sensitivity on table top (in air):
 - Seveal nrad/rt(Hz) > 1mHz
 - 0.4nrad/rt(Hz) >100mHz
- Needs to go into vacuum

See Joshua McCann's poster

TorPeDo Seismic Chain Design

Torsion Pendulum Dual Oscillator (TorPeDO)

--low frequency gravitational force sensor

Inverted Pendulum

- MultiSAS base
- Uses 3 Trilliums to isolate linear motion
- · Soft platform for actuation
- Contains GAS filter for vertical isolation.

Torpedo Sensor is operating with its initial control prototype running on a continues basis.

- 140kg 6-way cross / hollow sphere hybrid
- Large inertia combined with single wire suspension provides high passive isolation.
- Spherical structure raises the frequency of internal modes.
- 6-way cross allows for fine tuning of CoM and moment of inertia.

- 40kg 6-way cross.
- Acts as suspension point for TorPeDO system.
- High moment of inertia per mass provides additional isolation for rotation.

TorPeDO System

- Two dual wire torsion pendulums.
- Operation between 30mHz to 10Hz.
- Optical differential yaw readout.

TorPeDO Local Sensing and Damping

Collimators (x4) and Quadrant Photodiodes (x4).

Mirrors (x4)

Optical levers have been implemented on the TorPeDO for sensing:

- ➤ Pitch, Roll and Vertical modes.
- ➤ We now have control of all six degrees of freedom of each bar.

See poster by Nathan A. Holland, et al.

Sensor response and Detection

Euler-LaCoste ULF pre-isolation stage

- Replacing the coil spring in LaCoste stage with maraging steel Euler springs
 - Reducing the creep of the coil spring
 - Higher internal frequency of the spring elements

Improved Euler Spring design

- New Euler blade shape designed and tested
- Euler-LaCost designed
- Frame under construction

- Special shape with uniform stress and minimum blade mass
- Monolithic double blade for symmetry and minimum clamping loss.

See Joris van Heijningen's poster

Contoured Euler springs in compression tester

Control and Data acquisition System (CDS) @ ANU and UWA

- LIGO type digital control system CDS are operational in both groups
 - Extensive discussions between the groups
 - With the help from Keith Thorne (LLO), problems are being discussed and solved

Exchange and Collaboration

- Weekly low frequency program zoom meeting
- Sharing ideas, experiences, tips and tricks
- UWA PhD Joshua McCann visited ANU for 2 weeks in June

Next....

- Instruments running
- More mutual visits

