Space-based Interferometry

Dr Lyle Roberts¹, Dr Robert Ward¹, Dr Samuel Francis², Mr James Spollard¹, Mr Paul Sibley¹, Prof. David McClelland¹, Prof. Daniel Shaddock¹,

¹OzGrav, ARC Centre of Excellence for Gravitational Wave Discovery, Australian National University

² Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

LISA is a low-frequency, space-based GW detector

Laser Interferometer Space Antenna (LISA)

- Three satellites
 - → Triangular formation
 - → Separated by 2.5 million km
 - → Earth-trailing heliocentric orbit
- Six active laser links
 - → Heterodyne interferometry
 - → Picometer/√Hz sensitivity
- Expected launch date in 2034
 - → Led by the European Space Agency
 - → Mission duration: 4 to 10 years

Read the full LISA mission proposal here: https://www.elisascience.org/files/publications/LISA_L3_20170120.pdf

LISA is a low-frequency, *space-based* GW detector

Laser Interferometer Space Antenna (LISA)

- Three satellites
 - ightarrow Triangular formation
 - ightarrow Separated by 2.5 million km
 - → Earth-trailing heliocentric orbit
- Six active laser links
 - → Heterodyne interferometry
 - → Picometer/√Hz sensitivity
- Expected launch date in 2034
 - ightarrow $\,$ Led by the European Space Agency
 - → Mission duration: 4 to 10 years

Read the full LISA mission proposal here: https://www.elisascience.org/files/publications/LISA_L3_20170120.pdf

LISA is a *low-frequency*, space-based GW detector

GRACE Follow-On

- Gravity Recovery and Climate Experiment Follow-On Mission
 - → Launched on May 22, 2018
 - Vandenberg Air Force base
 - SpaceX Falcon 9 rocket
 - → Continues the work of the hugely successful GRACE mission
 - Launched in 2002, retired in 2017
 - → Measures Earth's gravity gradient
 - Monitors changing distribution of mass, including melting ice-sheets, groundwater movement
 - → First intersatellite laser ranging interferometer
 - This is kind of like a mini LISA

GRACE Follow-On

- Gravity Recovery and Climate Experiment Follow-On Mission
 - → Launched on May 22, 2018
 - Vandenberg Air Force base
 - SpaceX Falcon 9 rocket
 - → Continues the work of the hugely successful GRACE mission
 - Launched in 2002, retired in 2017
 - → Measures Earth's gravity gradient
 - Monitors changing distribution of mass, including melting ice-sheets, groundwater movement
 - → First intersatellite laser ranging interferometer
 - This is kind of like a mini LISA

GRACE Follow-On

- Laser Ranging Instrument
 - → "First light" operation began on June 13
 - Worked first time
 - → ANU contributions:
 - Link-acquisition system
 - Triple-mirror assembly (TMA)
 - Phasemeter

"It's the first inter-spacecraft laser interferometer and the culmination of about a decade of NASA- and German-funded research and development." – *Dr Kirk McKenzie*, *JPL*

GRACE-FO Single-Orbit Ground Track (June 14, 2018)

Internode Collaboration

- In 2018, we worked with students from the University of Adelaide to explore alternative techniques for inter-satellite link acquisition and tracking
 - → Dynamic beam-deflection using motorized Dual Risley Prisms
 - Experimentally demonstrated robust linkacquisition and target tracking
- Nathaniel Shearer will continue this work in 2019
 - → Investigate the use of his team's beam-steering system for more general applications of free-space link acquisition
 - E.g., free-space laser communications, light detection and ranging (LiDAR)

What's happening in 2019?

- Prof. Daniel Shaddock is leaving
 - We have a plan.
- Push the limits of weak-light phase detection
 - Future intersatellite laser ranging systems can expect to receive less than 10 fW of optical power.
 - Track the phase of a 10 fW optical carrier whilst maintaining picometer/√Hz sensitivity. This is very difficult.
- Explore new architectures for future space-based laser interferometers
 - Link acquisition for LISA and other space-based GW detectors
- LISA Experience of GRACE Optical Payload (LEGOP)
 - Test LISA concepts using GRACE-FO platform
- Light Detection and Ranging (LiDAR)
 - Applied for OzGrav Seed Translation Fund in November
 - Pathway to commercialisation

