The Science Case for OzGrav HF Eric Thrane & Paul Lasky ARC Centre of Excellence for Gravitational Wave Discovery

Why high frequency?

- Matter.
- The presence of matter affects gravitational waveforms at high frequencies: ~0.5-4 kHz.
 - Tidal parameters measured from late BNS inspiral
 - Tidal disruption in NSBH
 - Post-merger remnants

Tidal Effects

Usman, et al., DCC P1500105

Harry & Hinderer (arxiv/1801.09972)

normalized quantity characterizing the accumulation of information about the binary parameters per logarithmic frequency interval

Why matter?

- The main things we learn
 - The equation of state for matter at nuclear densities
 - Phase transitions in nuclear matter (maybe) [1]
- Other things we learn
 - Hubble. Matter effects break redshift-mass degeneracy, allowing us to measure H₀ without EM counterparts [2].
 - Everything else...

Other HF science targets

- There are other HF science targets, but the HF case for matter is the strongest
 - Better going to low-f: black holes, tests of GR, stochastic, high-z cosmology, localisation, large N population studies
 - More speculative: CCSN, isolated neutron stars, ...
 - Exotic: axion clouds, ...

Network

- We should envision OzGrav HF as the specialised high-frequency component of a global network.
 - The network detects and localises sources.
 - OzGrav HF measures matter effects.
- Perhaps OzGrav HF will be a springboard to a full 3G detector, but there's no reason it has to be: ~\$50M versus ~\$1B.

Summary

- High-frequency detectors are matter machines.
- Need one detector
- Not a big geographical advantage for Oz
- Sacrifice performance if it saves money or improves HF performance.
- For a modest budget, and building on our instrumental strengths, we can lead the worldwide effort above 500 Hz.

BBH

Equations of state

Tidal effects

signal-to-noise ratio Normalized integrand per log(f)symmetric mass ratio 0.8 chirp mass spin-spin parameter spin-orbit parameter 0.6 tidal parameter 0.4 0.2 10^{2} 10^{1} Frequency (Hz)HARRY & HINDERER (2018)

Post-merger

Hubble with BNS

