SOLAR SYSTEM EPHEMERIS NOISE

Stephen Taylor

NANOGrav PFC Senior Postdoctoral Fellow

CALIFORNIA INSTITUTE OF TECHNOLOGY

Chair, NANOGrav GW Group
Co-chair, International Pulsar Timing Array GW Group

The Solar-System Ephemeris

Tracing a **TOA** back from an **observatory to the emission time at the pulsar** involves a chain of corrections

$$t_e^{\mathrm{psr}} = t_a^{\mathrm{obs}} - \Delta_{\odot} - \Delta_{\mathrm{IS}} - \Delta_{\mathrm{B}}$$

The Solar-System Ephemeris

- all TOAs are referenced to the quasi-inertial frame of the SSB (need Roemer delay)
- Roemer delay dependent on masses & orbits of all important dynamical objects
- don't need SSB to navigate probes to planets (accurate SSB is not a big priority)
- the Roemer is not fit for in Tempo2, it is subtracted from pre-fit JPL solutions

The Solar-System Ephemeris

Roemer delay

$$\Delta_{\odot} = -\frac{\vec{r}^{\text{obs}} \cdot \vec{R}^{\text{BB}}}{c}$$

Observatory position

$$\vec{r}^{\text{obs}} = \vec{r}^{\text{SSB-EB}} + \vec{r}^{\text{EB-obs}}$$

Barycenter position dependent on masses & orbits of all important dynamical objects

Small error in barycenter position

$$\delta\Delta_{\odot} = \frac{\vec{e}(t) \cdot \vec{R}^{\mathrm{BB}}}{c}$$

JPL Ephemerides

includes updates to Saturn's orbit. **DE421** Dominant uncertainty likely to be Jupiter includes updates to Mercury's orbit. **DE430** Dominant uncertainty still likely to be Jupiter created in Jan 2016 for Cassini, this is **DE435** an incremental improvement to Saturn **DE436** incremental improvement to DE435 includes Juno corrections for Jupiter **DE438**

JPL Ephemerides

JPL Ephemerides

J1713+0747 (quadratic subtracted)

NANOGrav 11-year Results

upper limits and detection statistics are sensitive to our choice of ephemeris model

...mitigated by our new Bayesian ephemeris uncertainty model

GOAL

marginalize over ephemeris differences to isolate GW signal from choice of DE—

ephemeris uncertainty term

physically motivated

- Fourier expansion of barycenter error vector [Lentati, Taylor, Mingarelli et al. (2015)]
- planet mass perturbation [Champion et al. (2010)]
- dipolar spatially-correlated red process [Tiburzi et al. (2016)])

phenomenological

- Roemer mixture model
- PCA of Roemer delays from DE421, DE430, etc. to construct empirical basis
- [maybe] PCA of Roemer delays from many, many perturbed ephemerides

ephemeris uncertainty term

physically motivated

- Fourier expansion of barycenter error vector
 [Lentati, Taylor, Mingarelli et al. (2015)]
- planet mass perturbation
 [Champion et al (2010)]
- dipolar patially-correlated red pricess [Tiburzi et al. (2016)])

phenomenological

- Roemer mature model
- CA of Roemer delays from DE421, DE430, etc. to construct empirical basis
- [maybe] PCA of Roemer delays from many, many perturbed ephemerides

ephemeris uncertainty term

Model is 11-D

- 1 frame drift-rate about ecliptic "z"
- 1 Jupiter mass perturbation (constrained by IAU prior)
- 1 Saturn mass perturbation (constrained by IAU prior)
- 1 Uranus mass perturbation (constrained by IAU prior)
- 1 Neptune mass perturbation (constrained by IAU prior)
- 6 Jupiter orbital element perturbations
- (1) semi-major axis
- (2) eccentricity
- (3) inclination
- (4) longitude of the ascending node
- (5) longitude of perihelion
- (6) mean longitude

- 36 pulsars
- 11 years
- equally sampled w/ 500 ns precision
- dataset created under DE436

- dashed = no ephemeris uncertainty modeling
- solid = physical ephemeris uncertainty model

moderate GWB injection

11-year dataset simulations

(created with exactly the same pulsars, noise properties, and sensitivity as the real dataset)

11-year

purple = prior distribution
blue = DE435 (uninformative prior)
orange = DE436 (uninformative prior)
green = DE435 (JPL prior)
red = DE436 (JPL prior)

11-year

purple = prior distribution blue = DE435 (uninformative prior) orange = DE436 (uninformative prior) green = DE435 (JPL prior) red = DE436 (JPL prior)

Set III celestial mechanics coordinates

BayesEphem does not hinder detection prospects

BayesEphem is easy to use

accessible through "enterprise" github.com/nanograv/enterprise

```
# red noise
s = red_noise_block(prior=amp_prior, Tspan=Tspan, components=components)
# common red noise block
s += common red noise block(psd=psd, prior=amp prior, Tspan=Tspan,
                components=components, gamma_val=gamma_common,
                name='gw')
# ephemeris model
if bayesephem:
  s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True)
# timing model
s += gp_signals.TimingModel()
# adding white-noise, and acting on psr objects
models = []
for p in psrs:
  if 'NANOGrav' in p.flags['pta'] and not wideband:
    s2 = s + white noise block(vary=False, inc ecorr=True, select=select)
    models.append(s2(p))
  else:
    s3 = s + white_noise_block(vary=False, inc_ecorr=False, select=select)
    models.append(s3(p))
# set up PTA
pta = signal_base.PTA(models)
```